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ABSTRACT

fo simulate the phenomena of contact fracture a contact problem with
friction for cracked bodies is formulated. The consideration of this problem
{8 given for the case of subsurface cracks. The problem is studied by means
of a method which is applicable to a wide family of plane problems with
cracks. In addition to the mentioned above different problems for cracked
elastic plane and semiplane with free and loaded boundaries are considered.
These problems are formulated in terms of inequalities and equations.
partial or full crack edges interacting is possible. The solutions are
obtained in the form of uniformly valid asymptotic expansions. For various
stressed states the size and the location of the intervals of crack edge
interactions, stress intensity factors in the apexes of the cracks, the
dependencies of the problem parameters on the distribution of the external
stresses, and the crack location, orientation, and size are obtained.
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METHOD OF INVESTIGATION

The following problems for elastic bodies with straight cracks under the
assumption of the absence of friction stresses between crack edges are
considered: 1. Stressed plane with cracks; 2. Stressed plane containing a
main crack surrounding a number of microcracks; 3. Stressed semiplane with
loaded (free) boundary containing subsurface cracks; 4. Plane contact
problem with friction for bodies containing subsurface cracks; 5. Directions
of crack propagation in a stressed plane.

For these situations the relations between the strain jumps of the crack
edges u, and v, (u,=u,"-u,’ and V,=v,"-v. - tangential and normal to the n-th
crack edges direction strain jumps), normal P, and tangential T, contact
stresses between crack edges and acting on the crack external normal p° and
tangential 7,° stresses are given by the equations (see Fig.1)
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s Written in the form of alternative equalities
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The main difficulty in the solution is the analysis of the system of

alternative equalities and inequalities following from (4),(8):
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To surmount this difficulty all possible cases (for example, v,,(x,)>0,
Vo (X,)=0, v, (x,)>0, v (x,)=0, etc.) are considered under assumption §,<<1.
Under certain conditions, some contact regions between crack edges can
appear. The boundaries b, of these regions can be found in the form of the

following expansions:

D=3 3B iems k=1,2, ..., K. (10)
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The equations which are valid at the ends of the crack contact regions
Dby =0, k=1,2,...,K. (11)

are used to determine the constants f,.

As a result of the solution, the normal k,* and shear k,,* stress intensity
factors at the apexes x,=tl of the n-th crack can be obtained according to

the formula
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The expressions for k,,* and k,,* can be also represented in the form of

uniformly valid expansions for &,<<1.

Problem 1. Let us introduce a small parame-

ter 6§,=1,/b«l (1, - semilength of the maxi-
mum size crack, b - minimum distance betwe-
en crack centers), p/S -itC=-4p°[1+n+(1-n)
exp(-2ia,)], 7=9°/p° (q° and p° -stresses

at the infinity acting in the x- and y-di-
rections. Some solutions of the problem for

stress intensity factors k*,,(x%°) (graphs
—) and k,,(x%°) (graphs - -) occuring

under stresses p°=1, q°=0 in the case of
two cracks: z%=(0,0), y°/b=-1, a,=0, a,=

n/2, §,=6,=0.4 (curves 1) and in the case
of three cracks: z°%/b=(0,1), 2%/b=(0,-1),
a,=ay;=0, a,=m/2, 6,=6g=0.4, 5,=0.2, y°,/b=

-2 (curves 2) and y’°,=0 (curve 3) are given
in Fig.2.

Problem 2. Let us introduce a small parameter 80=1num/lo€l (1., and 1, -

semilength of the maximum size micro- and macrocrack, P =17, 2==%p° (7, 4+ (n,-
Ny)exp(-2ia,)], 7,=p°/q, n,=a°/q, (q=p° for p°#0, q=q° for p°=0); p° and q° -
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where g° - stresses at the infinity acting on

the semiplane in the x- direction, (a,c] - in-
terval of acting the stresses p(x) and 7(x).

Let c=-a= b, §,=0.1. For the cases of T(X)= .8
-ATo(1-x%/b%)"2, A=0.1, p(x)=q°=0, y° /b=-0.2,

5,=0.1, «,=0 (curve 1) and a,=n/2 (curve 2) the
stress intensity factors k*,,(x,,) and k" n(Xon)
are shown in Fig.6a,b. For the cases of

x7/ 1y

xa/b

Fig.sb

Fig.6a

P(x)=%p,(1-x?/b%)"?, 7(x)=-Ap(x), y°,/b= :
-0.2, a,=m/2: (1) g°=0, A=0.1; (2) g°=0,
A4=0.2; (3) g°/p,=-0.015708, A=0.1; (4) q°/
Po=0.0314, A=0.1lthe stress intensity fac- o
tors k',,(x°) and k*,,(x°) are shown in
Fig.7a,b.

K x/b
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Problem 4. The parameters pJ°,7.° and 5,«1 will be defined as in (12) (see
Problem 3). In comparison with Problem 3, the difference is that now the
pressure p(x) and friction stresses T7(x) are unknown. Under Hertzian
assumptions and the assumption that T(x)=-Ap(x) (A - friction coefficient),
the pressure is determined by the equations:
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where §° - pa, settling, f(x) - shape of the bar bottom, P -external load
acting on the bar.

If the Pressure in «he contact region is bounded, it is necessary to add
to (14),(15) the following conditions

p(a)=p(c)=0. (16)

Thg solution for P(x),a and ¢ can be found for &,«1 in the form of
uniformly valig asymgtotic expansions. For T(x)=-Ap(x) it can be shown that
p(x)=pocos1ry(bo+x/b)” " (bo=x/b) 2740 (§,2), bo=(1-4y?)172, y=1/n arctand/nw
(Po=2P/(mb), p - total load per unit of length). some solutions for y°,/b=
=0-2, a,=n/2, §,20.1 and: (1) q°=0, 4=0.1; (2) g°=0, 4=0.2; (3) ¢°/p,=0.04,
4=0.1; (s) 2°/Po=0.02, A=0.2; (4) q°/p=-0.01, 4=0.1; (s) q°/pe==-0.03, A=0.2
are represented in Fig.s8.

Problem 5. 1p general the crack growth rate depends on the stress state
near the crack apex and the crack size as well as on the crack orientation.
The latter jig extremely important for the analysis of the fatigue crack
growth which determines the body's contact fatigue.

The angle o.,.* determining the inclination of the crack growth satisfies the

following equality;:
ki, —‘/ kip)2+8 (k2?2
8:,=2arctan—2a"y (Kin) (Kzn) . (17)

4k,

Iterative calculations of the fatigue crack growth taking into account the
changes of the growth direction

aLkOL)_a(nk)_"et(ll;)' a;ﬂ)_an (18)

522

(the angle ©. ¥ can be determined by
(17), k=0,1,... number of iterations) |
lead to a polygonal trajectory of the
crack growth. Nevertheless, in the
limit this process lead (actually & \5‘ Sigea
after several iterations) to a,= ’
lim_, a,® which satisfies to the
equation

Kin
=S8 03
L2

k3,=0. (19)

The equation (19) follows from the
equality lim,_, ©.%=0. A set of
experimental data (Parton and Morozov,
1985; Finkel, 1977; Solncev and Morozov,
1978; Finkel,1970) confirms that during
the growth, cracks tend to orient in
order to satisfy the equation (19).

Let us consider a plane containing N
straight cracks and try to determine
the limit cracks’ orientation in the
above mentioned meaning. Using the
expressions for p°(a,),7°(a,) (see
Problem 1) and

1
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the angle a, can be found in the form (A,o; and B, - corresponding
coefficients of asymptotic expansions of the following kernels
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From equations (20) for Ay (See (21)) the following equations can be
received (/7=q°/p°, see Problem 1)

th(a,,) =0, ®n1=0, oo, (B=1,2,..,,M; ne1, (22)

cnfwl(am,...,ana,...,am,)-o, ceer (n=1,2,...,M; n-1, (23)

For n#1 from (22) we get two values of ay,: a,=0 and x,=m"/2. Hence, for
nonsymmetric stressed state (7#1) there are two marked-out directions of
crack ocrientation, the angle between which is with accuracy 0(§,%) equal to
7/2. It might be an explanation for the experimentally stated curves of
crack developing in different materials (see Finke1,1977,pp.150,168,175;
Solncev and Morozov, 1978,pp.36,37,40-42) in nonsymmetric stressed state.

To determine N angles a, for symmetric stressed state (n=1) it is necessary
to consider the system of N nonlinear equations (23). The solution of this
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system depends on the crack relative location and size and, in general,
might be non-unique. The described mechanism of crack developing can be an
explanation of the radiant fracture of the non-hardened glass during or
after impact (Solncev and Morozov,1978).

The pPoOssibility of some limit crack orientations can be treated as a model
of the branching process.

The considered Problems 1-4 can be solved in an analogous way by taking
into consideration the friction between the interacting crack edges or
liquid containing the crack voids. Besides, in the case of absence of the
crack edge interactions, the problem for unbounded three-dimensional elastic
Space containing differently oriented and located circular plane cracks can
be solved using a similar procedure.
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