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ABSTRACT

The paper is devoted to analytical investigation of stress- strain state of fibrous composite
with matrix crack for the plane and space problems. At infinity composite is subjected to
axial stretching coinciding with fibre direction. The crack is perpendicular to load and axis of
fibre penetrates through its center. Fibre is treated as unidimensional elastic beam. Its contact
with matrix is accomplished along the line with plane problem and on cylindrical area in the
case of space problem. In the plane cases the questions of interaction of fibre are touched
upon. The asymptotic method is permitting to split the stress-strain state of matrix on
components is used. Their determination can be limited by simpler problems.
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INTRODUCTION

Plane problems on influence of strengthening elements on stress state of isotropic plate with
crack were considered by Bloom et al.(1966), Cherepanov et al.(1969), Greif et al.(1965),
Sanders (1959) by means of analitical and numerical methods. It was shown, that effect of
strengthening element was essential, when it was not far from crack end.Maximum decrease
of stress near crack top takes place, when crack stretches over strengthening element slightly,
thus, study of interaction of strengthening element and symmetric about it crack is of great
interest. Such case was considered Pavlenko et al.(1981a) for orthotropic plate. Up to the
present time such space problems were practically not investigated, as they contain
considerable mathematical difficulties. Besides ,the model of unidimensional elastic inclusion
in combination with model of contact along line is not applicable immediately in space
problems for solids with elastic inclusions,having small cross-sections (Sternberg, 1970).

In this paper the plane and space problems on stress state of fibrous composite with crack in
matrix are considered. Composite is stretched along fibres, crack is perpendicular to the
load action direction and axis of fibre passes through its center. The questions on interaction
of fibres are touched upon in the plane problem. In the space problem the attention is
concentrated on one inclusion with constant circular cross-section. It is assumed, that
matrix is orthotropic in common case, the main directions of anisotrophy coincide either
with Dekart coordinate axises x,y or with cylindrical r,0,z.

ON THE METHOD OF INVESTIGATION

During the investigation of complicated problems of anisotropic and composite materials one
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In the first approximate corresponding stresses are given by formulars:

Ss=Es3w/az , T =6 aw/an &
GizEiaw/an, Scfu/T , T,=63u/az ; ©®
T‘ T1 *Tz

tially the scope of problems, which can be

The proposed method allowed to extend essen
od is carried out by Kagadiy et al. (1992) for

solved analytically. Generalization of the meth
viscoelastic material.

THE PLANE PROBLEM

posite with crack in matrix. At infinity

Let us consider stress-strain state of fibrous com
fibrous stretching with intensivity 0y.The

composite is subjected to uniaxis codirected with
crack is perpendicular to load and stretches for equal length on both sides of fibre through its
center. Fibre is treated as unidimensional elastic beam. The contact scheme passes along the
line. Matrix is orthotropic, the main directions of anisotrophy coincide with Dekart coordinate
axises xi , yi . It is assumed, that neighbouring fibres do not influence on stretching along
fibre on the infinite orthotropic plate with Symmetric crack. Fibre is placed along axis x,
crack is placed on the line (x| =0,-1¢ y1¢ 1). The method described above is used for the
solution.At the first stage we come to integration of equayion (1) with the following boundary

conditions

5.-0 (x\30 > -25344?,) 3 G" =G'° (‘x1\-b°°)
W=0 (%0, y,:0; x20,4,20), wsug (4,=0)

where u is displasement of fibrous. Equation (1) satisfies, if the function F will be

introduced:

Si=Fy , T=-Fx, @

Component v of displacement vector equals zero with y; =0 (from the conditions of
Symmetry) then 7= along fibre. Stress in fibre must be 01E/E) , and beam effort P* for

cross-section x1 =0 is given by formular (from the requirement of equilibrium)

x, .
£ L, E dx,=pnt 3F 4 (3F _\E 3F 4
P_G"AE"PZSQ-Tq xq~AE1 u, ZtSa;“ AE; Yy &
° L]

where E,A - are moduls of elasticity and area of fibre cross- section, t is thickness of matrix.

Undimensional variabilities are introduced later.
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we shall consider the field Yy,

. 0, as the problem is symmetric. From the equations 1),(D,9)
it follows, that

P= =yy , W=~y

Last equalities are the Koshy-Ryman equations, so as function
d)(i):\QQL\\J (L:d—i 5 2= ’IQ-LS)
is the analytical function of complex variable z. From the equality (8) it follows, that
Py-MY = P 5[
where J“zﬂs,/e;\ s P= p‘el/g,EA

As far as the stress 0 is zero on crack, then
$=0  (=x=0, o¢ygt) an
From the condition u=0 in the point (x=0,y=0) and on the line (x=0,y»1) we obtain:

Y=o (x:=0, y=0) , (x=20, 3,,1) 12

Thus, the decision of the problem is reduced to definition of analytical in upper semi-surface
function P (z), which meets the conditions (10)-(12).Function ® (z) must meet the
additional condition (from the condition at infinity):

Cb(;)w —-iz (z—-vec) a3

As a result we obtain
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Under the conditions (11), (12) it follows that P(0)=0, D
for P and C, decision of which i is as follows:
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/v(x), Ky(x) are modify Bessel functions, Ly(x) is Struve function. Function ¥(z) (14),

displacement u, stresses 01 and 7) are defined by functions P and C with formula 9. In
particular:

Toe- (Se\eg, ) 2% fax = - (S S/, ) Re P'2)
On the line (x=0)

ReP(@)=wdy)  (Y41) ; Re®'@)=0  (y>y)

where
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From this, tangentional stresses do not meet zero boundary conditions on crack. The

discrepancy is taken off by the decision of equation (2) under the following boundary
conditions

Te= T4 (x=20), V=0 (Y=0) (18)

All functions appeal to zero at infinity. The decision of the problem (2), (18) is as follows:

> x
G’.,E guo (8) ~XaS

U’('xhg)--g. ﬁ S e Simysds

Q

where
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uo’(s)=gww)smsgd5 ) Iz'%- -
Q
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Now tangential stresses 7 meets the zero boundary conditions along line (x; 0).Coeffisient
C (which is determined from equation (16)) is ratio of coefficients of stress intensivity in
the crack top for the matrix with fibre and without it. [f in cross-section x=x1 =0 fibre is torn,
then coefficient C is different from (16) (we shall mark this coeffisient C*). As C*»C,
then the advancement of crack in matrix is possible only with broken fibre. If the fibre is not
broken, then the question on destruction will be connected with determination of adhesive
firm of junction of matrix with fibrous. The influence of neighbouring fibres on stress state
around crack can be taken into consideration in the following way.Let us assume, that fibres
(they are disposed on the distance 5 from central fibres) are not displase along axis y;

with deformation (v=0,y; = ;) it is problem periodical in direction y1 . That is why we can
consider one period and the field x130,0¢y1¢ 61 , 41> | for symmetric problem. The boundary
conditions for the equation (1) are ‘&,30(%,20,06y,¢8),WL=0(, :u,xo;tt\j.‘&), u:u‘(q.-o;g‘.-&),
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G\, (x?"’ o) . The condition of egilibrium of central fibrous leads to equation (10)
and of neighbour fibre leads to the cquation Iy-my =Py (y=B), R=8, ,
, B=

If we introduce function

f(v.)-df(i)ﬂyq-"(z)ﬂ.(mpi) 19

then boundary problem for it may be formulated as follows:
Ref(3)=0 (x=o, 1eyeb), Jw £(2)=P, (4=0), Jw $@)=P(y- B),
ot (2)= POy (x:=0, yed), §(3) ~ pz

The decision of this a i m ri
problem may be found by reflection of considered y-stri
: =
semy-surfase by means of the function > TR

G+l =chzyg=chx, cosyx +Lshacy siuyy
Zt:s;%/k, I*:Tx/b ’ SX‘(IH/B

The decision of €quation (19) is

P gz (gL ) R A(g)

B N IR il ' i
M ) SR Sy [owmy ] (5 o) 140

Pand C are determined from the iti i i
condition u=0 in points (x= =0), (x=0, y=1]
P are connected by ratio P-pP; -)4& ¢ T and

AXIALSYMMETRIC PROBLEM

flu p[:ose that ela.sl‘ic ir.lclusion (fibre) with circular (radius a) cross-section is placed in the
astic onhom.)pnc solid (matrix) with cylindrical anisotrophy. Axis of fibre coincides with

g:f::_ctlsu;g:-egllxlec.essary to deﬁne t'he (_iistribulion law of efforts in fibre, contact
Stress state o e fnbre and matrix , distribution of efforts in solid and influence of fibre on
continnu, 1 o elc’:rack. top. We Suppose, that model of unidimensional elastic inclusion
Eovloto 108 m ination with model of co.n(act on cylindrical area for matrix takes place

o, I; Sternberg,1970). On the first stage we came to integration of equation (3)
under the following boundary conditions

Sy=0  (z=0, 1‘?'13 y Oz =G, (| = =0),

W=0Q (%=0 »=q, ; %=°’2>‘e’~)x W =W UL:Q')
After the introduction of new variables

i=x1Q- ) '[:Q_e“" ;W‘Wa'qo,g‘eu‘s'!, S1=ehT1 20
€quation (3) will be as follows:

8 /6x, + 3S,/3y, =0

The last €quation is satisfied if function F is determined from (7) and effort P* in
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cross-section of fibre x| =0 is

P (AE/E5)Fyu-2AF , yso , Ae Tl -

Utilization of ratioes (9) (after substitution in (9) E; to £3, 1 to In(/; /a),utowy, T to81)
hows, that functions ¢ and ¥ satisfy the equation

(22)

Yu=Pxe > ~Wx= e-zgg“?u

Equation (21) goes over into equation (10) with melEs/E ,P=P‘F/4EA and the conditions
73=0 on crack and w=0, when z=0 r=a and z=0, rylilead to conditions (11), (12). Hence,
the solution of problem consists in finding of functions Px,y), Y(x,y), which satisty the
system (22) and the conditions (10)-(12). Out of the solution decision of system (22) p(x,y)
and Y(x,y) we compose the function of the complex variable {=x+iy, <I)(§)=<p+i1,0. The
“derivative” ®’(&) is determined in the following way (Lavrentiev et al.,1973)

Py = purieh yo @y
Function ®(§) must sutisfy the condition (at infinity 03=09, 71=0)
PR} a=tf [f=od)

If we introduce function f(&)

§(5)= PE) i) riP=(y wr) (€S py-pg-P)

("derivative” @’ (0) is defined from (23)), then boundary conditions for £(§) are as follows:
Ref(g)=o (=0, 4>1), Imf(g)=0  (y=0) ,
g (g)P (x20,4¢t), § ()M (5> =)-

Further analysis is analogous with plate problem, as far as the formulas of generalization of
Koshy theorem and Koshy formula take place here.
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