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ABSTRACT

This paper deals with the deteraination such the linear and
nonlinear fracture mechanics garaleters as the stress in-
tensity factor K, the energ¥ J-integral and others by nume-
rical methods. The various fracture criteria are discussed.
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It is well-known that the cracks bodies calculations
Erasuppose the knowledge of the stress-strain state near
he crack tig. The fracture criteria deal not only with the
components of the stress-strain state but the fracture
mechanics parameters as well, which evaluate this state in
a certain way. In the first place these parameters include
the stress intensity factor (SIF) K, the energy integral J
which seems to be most perspecﬁive in the nonlinear
fracture mechanics, then the crack OYening displacement and
othgrs (Parton and Morozov, 1985). All of them are widely
used.

It is quite enough to know SIF to formulate the fracture
criterfon in the field of the linear fracture mechanics.
For it determination the analitical and numerical methods
of the theory of elasticity are used. fs a matter of fact
the analitical methods (Yor isotropic and homogeneous
aedia) have alread¥ been exhausted; the possible var etg of
rather simple bodies forms and load schemes has been
investigated and now voluminous reference literature about
SIF exists which has been created on the base of these
solutions. Still there is not enough reference data to meet
the need in factors K. In this connection the effective
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by - the stress on the crack line with the normal n
in the entire body due to the definite load; u, - dlsplaée—
aent of the crack sides due to load p, .

[t follows from condition (2) that
“Jo idp-p ov dy-6-0.
2y-Jpgg '

In this equation G is the energy flow in the crack tip; by
Irvin G = g‘/E. Therefore,

K _ G, ol
E __‘JP:’ de (3)
If we now introduce two sistens of the loads one of them is
given (and for which it is needed to define K), and the
second is a standard one("unit”, K is known for that),
S0 using superposition principle and Betty theorem we may
ro

obtain 1 equation (3) o u“) 0" ay‘”
2 , 1) W\ Q A
T:_‘_(Rrhl‘ +H5 K_r, )—oj ‘ng‘ofl!fzjﬂ%dl‘ (4)

Here the lower index Roman numerals stand for factors K for
[ and II crack deformation ty?e: the upper index (1) notes
values of the standard load; I* and 1= are the upper and

the lower sides of the crack.

The obtained expression (4) 1is in accordance with the
weight functions method (which is mth complex of the
considered known functions g/k”.oU"/3€) and allows to
determine K from the arbitrary load p by simple integration
of the known functions on the crack surface.

The influence functions method supposes the similar

operation of integration on the crack surface for factor K
oint of the volume crack

determination in the arbitrarx g lGdes the 1ikin
nclude pre ary

front. The essence of the metho
determination of the stress intensity factor K from the

unit loads distributed on all the element nodes adjoining
the crack surface.

The weight functions method and the influence functions
method require the spade work therefore, their application
is lustif ed in only case of relatively typical constructi-
onal elements with various calculating regimes (for examp-
le, pipings, construction buildings, pressure vessels).

Jakin? into account the above-mentioned unexactness of the
calculated equation 4o the input value pricision the simple
line spring model is worth considering (fAkimkin and
Nikishkov, 1991). The method is based on the substitution
of a three-dimensional Yroblen with an unthrough crack tor
the problem of the shell theory - a plate or a shell with a
through crack and the additional pivotal elements which
compensate the compliance change caused by the crack

surface increase.
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the edge length near the crack front. While carrying out
the equivalent domain integration methog the linear S-func-
tion on the front for the corner nodes and the guadratic
one for the middle nodes is applied, The calculate
functions for the point of the crack front & =7 /2 (the
deepest point) are given on fig.{ in the normalized way

1= hy Pelia
wherePis a full elliptical integral of the second type,
These weight functions are singular on the crack front
along the length of one element, that is in accordance with
the middlemen part of K calculating by the e?uivalent
domain integration method, The  comparison  with
Benchmark E itorial  Committee results  (1980) of the
normalized stress intensity factors for tension and bending

cases calculated by the Helﬁht functions integration on the
surface crack showed that t y

The problem on the three-dimensional elastic-plastic energy
integral definition for the semielliptica] crack in a plate
under tension has been solved. The calculations have been
made for the semielliptical crack with the semiaxes relati-
on asc = 2/3, 1/2 and {/3. The discrete mode] comprises {28
finite elements and 743 nodes. The nonlinear material beha-
viour was modelled on the base of the plastic flow theory
with isotropic hardening. The iterating scheme of the
initial stresses has been used for solving of the nonlinear
equations. The energy integral values along the crack front
for various ]oad levels have been defined by the equivalent
domain integration method., The calculations have been done
for the ideally elastic- lastic material with - 0 and
for the Iine—hardenlng material with [ - 0.1xE. The
comparison of the J- ntegral value change along the crack
ront a/c = 2/3 for elastic and elastic-plastic ehavior of
material under the load & =6ér 1is shown on fig.2.

The stress intensity factor in the joint zone of the branch
gipe with the energy reactor bOdY under the break-down si-

uation threat  has been calculated. The genera] problen
scheme is shown on fig.3. he reactor body and the conside-
red branch pipe have been heated to temperature of 300 C in
the stationar regime. There assumed a rugture of the first
contour pipe, as a result the system of t e zone break-down
cooling begins functioning and the cold water starts
flowing through the branch pipe. The water fills the part
of the branch pipe and gets in the reactor body, where the
barrier blocks its ¥ay, and at a consequence fhe lager of
the cold water is generated below the joint of the branch
pipe with the reacfor body. It is believed that the surface
semielliptical crack with as/c¢ = 2/3 and the depth of 0.25th
hody reactor’s wall thickness is located in the joint zone.

The nonisothermal elastic  environment model with the
dependence of the phisical-mechanical Froperties on
Lemperature has been taken for calculation. The [oad scheme
represents the nodal forces from the internal pressure, the
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tension from the pressure on the cover of the reactor body
and the ficticious nodaj forces caused by temperature, The 31
discrete model covers 443 quadratic elements ang 2233 nodes
(fig. 3). The stress intensity factor calculation has been
done _bg the direct asimptotic method on displacements, by 21

the virtual crack extension method and alsg bz using the

Intluence functions for a semielliptical crack in a plate.
he calculation results are shown on fig, 4,

There has been done the three-dimensional elastic-plastic
calculation of the stress-strain state and the fracture
Bechanics parameters for the steam-generator collector 0
perforate zone under the break-down conditions. [n the
stationar regime the collector Is under interna] and
éxternal pressure, the collector’s walls are heated with a
@lhor temperature gradjent through their thickness. Under
the threat of ¢t ¢ egermetization violation of the second i i ) |
contour the externa] pressure falls to zero and the outer : 60 75 §°
surface itse[f is essentially cooled. g 15 30 45

Fig.t. Height fuctions fur uvne

The fracture Bechanics parameters have been calculated for i f -

the following axial cracks. through-vall, semfelliptica) gffggi}cg?‘gﬁdﬁk semts 3 9 Gnfegral fo Seaie
}hpough—uall and  semielliptical with 'a uarter wall : Wi e]}?pt§cal crack in elastic
‘hickness depth cracks situated in the mf dle of the ; and elastic-plastic bodies

perforate zone, The elastic-plastic material model with the
Isotropic hardening is taken for calculation; the ferforate
field "is tonsidered as the homogeneoys orthotropic medfum
With the Prominent radial direction, therefore the problen
has been solved in cylindrical coordinates. The ef ective
elastic orthotropic parameters are found from the condition
of equqlltg of the average displacement values in entire
an e bodies. The energy J-integra] is determined
b¥ the wvirtual crack extension method which froues to be
effective dealing with the elastic-plastic problen,

The discrete model of the bodg with a semielliptical
through-wall crack consists of 32 three-dimensiona] sopa-
rametric quadratic elements with {737 nodes (fig.5), Fig. 6
shows tLhe J-integral change on upger through-wail crack
front under pressure and temperature for 4 steps. Comparing
the  obtainsd J-integral value with the corresponding
materia] characteristic Je, we may draw he conclusion
about the crack starting on the upper front outer surface.

- o displacement metRod
w0 o D‘L‘;.Cnl crack extension method
50} ¢ influence function methsd

30 1 - :
0 30 60 g0 120 450 %0

&

Fig.4. The crack intensity factor
= distribution or crack front

Fig.3. Discrete model for joint zone

f branch pipe
gith energy reactor body
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Fig.6. The J-integral exchange on
upper through-wall crack
for 4 load steps

Fig.5. Discrete model for steam-generator
collector perforate zone
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