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ABSTRACT

A non-linear line spring model for surface flaws in plates or shells is discussed. Based on a complementary energy
method, the non—linear constitutive relations of line springs, J—integral and crack opening displacements (CMOD,
COD and CTOD) of surface flaws are obtained. A simple method for determining the factors in complementary en-
crgy expressions is proposed. The presented non—linear line spring model combined with finite clement method is
successfully applied to analyze the surface cracked plates under tension. The numerical results show that the calcu-

lated values of elastic—plastic CTOD coincide well with those by experiments when a / t>0.25.
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INTRODUCTION

The line spring model (LSM) originally proposed by Rice and Levy (1972) has been verified to be a reasonably accu-
rate and cost—effective tool for analyzing the part—through surface cracks in plates or shells (Delale and Erdogan,
1981; German et al.,1983). The LSM has been further developed to estimate the J—integral and crack propagation in
the elastic—plastic range (Parks, 1981; Kumar et al.,1983; Miyoshi et al., 1986). Obviously, the LSM combined with
finite element method can be successfully used to describe the fracture behavior of complex surface cracked problems.
The engineering approach of elastic—plastic fracture mechanics (Kumar et al.,1981) has been applied to the LSM fi-
nite element method to simplify the process of analysis (Kumar et al.,1983). Therefore, the attention may be concen-

trated on the calculations of fully plastic fracture parameters of interest.
The core of LSM is the introductions of “line spring”, which is cquivalent to a plane strain single edge cracked plate

(SECP) under tension and bending. To establish the fully plastic constitutive relations of line springs, the fully plastic
solutions of SECP are needed, which are usually calculated by finite element analysis. Some typical fully plastic solu-

309


User
Rettangolo


6'/20-3/24(7 /0) 'S”/a,, )
Whel!, Sy and are deviatoric ress and fu tic str; viator, o, is the ef Ve stre. €lin
'] &y atoric st lly i i i
plas: i i
P strain deviat » 0, is the effecti: tress, defined by
g, =3/28 s" 3)

; 4
f=(AN"+2BNM /4 M /0y log(t—a)")
where A, B and C 5 i ?
: undetermined factors. The fully plastic copstitutive relations of SECP are then obtained as
- 4 -
¢ = /9N =g ' ""(AN+BM/I)/[ao(t—a)’] ©)
0,=30 /M - S
M= TN L CM /) /o, 0- a7 Q)

where, A ic di
« and 0, are the fully plastic displacement and rotation of SECP, respectively

Fig.1 SECP under tension and bending
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THE DETERMINATIONS OF FACTORS A, B AND C

Ilie major problem to be solved in the complementary encrgy method is how to determine these factors in equation

(5). A simple method suggested by the authors is given below.

Hy defining =M / Nt, and substituting it into equations (6) and (7) leads to

A, =az,'0% VINYA + BY) /(02— )] ®
0, =az, 10" " IN*(B + C2) /o2t —a)**"] ©®
®=A+2Bi+CA (10)

On the other hand, the expressions given by Kumar et al.(1986) are as follows
A, =aziah (a/ 40N/ N)* (11)
(12)

0, =ae,h (a/t,An)N/N )"
where hy and hy are dimensionless functions ofa/t, Aandn, Nyo=tof, f, isdefined as
1455[—a/t+V(1—a/0  +@/1’) 1=0
fo= : 5 (13)
l.155[—|2/1+n/t|+~/(l—-a/t) +Qi+a/t) ] A#0

By comparing equations (8) and (9) with equations (11) and (12), respectively, we can recognize that equations (8)
and (9) are explicit forms of equations (11) and (12) approximately. According to the comparisons above, the values

of A, B and C can be determined by means of available finite element solutions of h; and hg.

Considering SECP in the cases of pure tension (M = 0) and pure bending(N =0), which are the two extreme states in

combinations of tension and bending, the A, B and C can be obtained as

A=(-a/0" B (Lass[— 14 (= t/a) + 1]} V0D a4
(1--)/(14-)1‘-“.455[_l+m”-z/uu) (15)
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Fig.2 A, Band Cversea/ tin the casc of n=>5.

where, superscripts t and b on the h represent the pure tension and pure bending, respectively. The h, and hy in
equations (14)—(16) are functions of a / t and n. Thus, the A, B and C given by equations (14)—(16) are virtually func-
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tions of a /
_— 8/tand n. The values of h are taken from Shih and Needlman( 1984), which have been examined through
ste i i
cy.chcckn. The A, B and C varies with a / t in the case of n=5 are shown in Fig.2. Obviously, the A Band C
can be casily €Xpressed gg Polynomial forms. , ,

THE FULLY PLASTIC J-INTEGRAL AND CTOD OF SEcp

Where, a is the i
by gt l :rlc:k length of SECP. The J—integral can also be evaluated directly through the finjte clement analysig
8i. efinition of path integral. The Comparisons made by Miyoshi et a]. show that the values of J—integral

In this sectjo i
ment ot g c: the complementary energy method is developed to estimate the fully plastic crack opening displace-
A - The CMOD s defined as the crack mouth opening displacement, COD is defined as the crack open.
a Ty ! . )
cement at the original crack tip, and CTOD is the crack tip opening displacement defined by Shih (1981)
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Fig.3 Equivalent process of loading

By acting a paj

- 8 2 pair o'f forces, P, on the crack mouth, and considering the €quivalent process shown in Fig.3, we can ob-
10 the fully plastjc complementary cnergy of SECP as ’

a’ =ago O F A 0L as)

' = 2 3

. [ANN + p) +2B(N+p)(M+pz/2)/:+c<M+pt/2)’/:’J/[a°(t—a))’ (19)
sing the Crom-Engeuer theorem for the problem, we have

@=-1ns2
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s is i
wm 18 the value of fully plastic CMOD. The another expression of CMOD is as follows(K umar ctal,1983)

S =z th (as t40)(N/N,)" @
The h, funct
2 function reprelento;d by factors A, B and C can be obtained by comparing equations (20) with (21) as
a-1s2
h, =0 [A+BA+(B+C1)/2]I‘:/[n/t(l—a/t)"’"] 22)

Equation (22) can be i
l used to €Xamine the accuracy of equation (20) by available finite clement solutions, In ig
s Fig.4
some €Xxamples about the hz versusa/t when n= 5= 0,-1/16 are illustrated. The solid lines are the values of h,
computed by €quation i i f €
(22), and the solid triangles and circles are inite element solutions (Kumar tal, 1981 1983;
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cment solutions provided a / t is less than about 0.25.
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Fig.4 h, versusa/tin the case of n= 5
In the similar way, by acting a pair of forces, P, on the original crack tip leads to
8=ae, 0" " [A+ B2+ (1/2—a/ 0B+ CAYN/ te )/ (1 —a/p)** (23)

where, & is the value of fully plastic COD.

Fig.5 Profile of single edge crack

The profile of single edge crack(Fig.5) suggested by Kumar et al.(1983) is applied to calculate CTOD of the SECP.

The relations of CTOD and COD is given as

8,=8Y """ (n /126, — )}l + 1)/ 0]+ 24)
According to the geometry in Fig.5, we have
6/5_=-(x°—a)/x° (25)
Substituting equations (20) and (23) into (25), after collecting terms, we have
(26)

x“—a-t[(A+Bl)/(B+C1)+(l/2—a/t)]
The fully plastic CTOD can be finaly calculated by equations (23)—(26).

NUMERICAL RESULTS

The constitutive relations of the non—linear line spring element are given by equations (6) and (7). The presented line
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For compari; i i i
parison with available €xperimental results, three crack gcometries are calculated:

a/t=0.497, a/c=0.343;
a/t=0.342, a/¢=0.323;
a/t=0205, a/c= 0.297.

r the first and second crack geometries. For the third one, the values of

‘
€ experimental results when the applying stress, o™ / gy, is greater than
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Fig.6 Elastic—plastic CTOD versus applying stress

CONCLUDING REMARKS

A St e e IR S

to determine the factors in the complementary energy expression of SECP by means of available finite element
results. The surface cracked plates in tension are examined by the model with finite element method. The calculated

results of elastic—plastic CTOD are in good agreement with those of cxperiments when a / t is not less than 0.25.
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