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ABSTRACT

In the present work, modified crack closure integral (MCCI)
method is used to develop expressions for strain energy
release rates (SERR) of 20-noded isoparametric singular
elements in 3-D problems. Numerical results are presented for
a penny shaped crack in cylindrical body, center crack
tension (CCT) and edge crack shear (ECS) specimens. Estimates
of SERR obtained for 20-noded singular elements are compared
with the available results in literature.
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INTRODUCTION

The most practical crack configurations encountered in real
life industrial problems are three dimensional in nature.
These configurations are either through cracks, part-through
cracks or embedded cracks. (Through cracks in solids and
part-through or embedded cracks in any material requires 3-D
analyses.) Finite element method (FEM) has become the most
popular numerical tool for the estimation of stress intensity
factors (SIF), strain energy release rate (SERR) G 1in
fracture problems. Stress analysis by FE methods basically
provides displacement and stress distributions in a
structure. From these distributions the fracture parameters
are post-processed. In literature, one finds that various
methods have been used to estimate SIF and/or G in different
modes and their distributions along crack fronts. The most
commonly used techniques are (i) crack opening displacement
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method (Chan et al., 1970) (ii) virtual crack extension
method (Parks 1974, Hellen 1975) (iii) nodal force method
using singular crack tip elements (Raju and Newman, 1977) and
(iv) direct estimation of SIF as separate DOF using singular
hybrid elements (Atluri and Kathiresan, 1975). A recent
development of VCE method is referred to as the equivalent
domain integral (EDI) method for J-integral calculations in
3D problems (Nikishov and Atluri, 1987).

Irwin's <crack closure integral (CCI) 1is one of the
significant concepts for estimation of strain energy release
rate (SERR) G in individual as well as mixed-mode situations.
SERR can be estimated from the CCI concept by considering an
incremental crack extension and evaluating the work done to
close the crack to the original configuration.

Using the CCI concept, Rybicki and Kanninen (1977) have
proposed FE calculation of SERR from modified crack closure
integral (MCCI) through a single analysis using nodal forces
and displacements in the elements forming the crack tip in 2-
D problems. Later, Buchhalz (1984) developed MCCI expressions
valid for LST and 8-noded gquadrilateral elements. MCCI
expressions are basically element dependant and their
derivation needs a systematic approach, particularly, in the
case of crack tip/front singular elements. For this purpose,
a general procedure was proposed earlier for 2-D° problems
(Ramamurthy et al., 1986; Badari Narayana, 1991 and Raju,
1986). Using this procedure, the element dependant MCCI
expressions are derived (using shape functions, displacement
and stress distributions in the elements forming the crack
tip) . MCCI expressions valid for 8-noded and 20-noded regular
brick elements in 3-D problems were recently proposed
(Badari Narayana et al., 1991, 1992).

In the present work, the above mentioned general procedure is
used to derive the MCCI expressions in 3-D problems (with
cracks) modelled using 20-noded isoparametric singular
elements. Application of the procedure is illustrated through
several examples such as a penny shaped crack in cylindrical
bar, CCT and ECS specimens.

MODIFIED CRACK CLOSURE INTEGRAL (MCCI)

Figure 1 shows a quarter elliptical corner crack in a 3-D
solid with the plane of the crack front parallel to the xz-
plane. Local coordinate system at any point along the crack
front is denoted by PYQ-system with P-axis normal to the
crack front. As the crack front undergoes an extension by an
infinitesimally small area a&aA,, using Irwin's CCI concept,
the crack opening mode SERR, Gp, is obtained at any point q
along the crack front as

Grl@) =Lt  -—--- JSoy (p,0,0) U, (P-aP,7,Q) dpdq (1)
AA

q -> 0 AAq AAq
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FIG. 1 QUARTER ELLIPTICAL CORNER CRACK IN A 30 SOLID :
HOTATION AND CO-ORDINATE SYSTEM.
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FIG. 2. 20 NODED ISOPARAMETRIC SINGULAR ELEMENT
3). SINGULAR ELEMENT IN CARTERSIAN C0-ORDINATE SYSTEM
bl. PARENT ELEMNET IN LOCAL C(0-OREINATE SYSTEM

CRACK FRONT

FIG. 3. TYPICAL FE MESH IN THE CRACK PLANE
AT THE CRACK FRONT

Uy, -1

CRACK FRONT

FIG. 4 NODAL FORCES AND DISPLACEMENTS :
20 NODED SINGULAR ELEMENT
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1N which aAaA_ jig Sub-area of apa around the poj

normal sqre%s with reference to the oﬁlé?ga%, gga;i
configuration and U, is the Crack opening displacement with
fefe;ence to the tended crack configuration. (Note that r
= P 1n 8 = g plane and r = - P in o = 7 plane and aa_ =
9P.39). In numerical calculations, the limiting processqis
replaced by evaluating average G with reference to the
V1rtgal crack incremental area AA_. Average G is given by
the integrand. Similar expressions égn be written for mode-II
and mode-ITT crack deformations.

FE ESTIMATION oF MccIr

In a finite element analysis, the crack front is divided into
g nupber Oof segments by different elements (Fig.3). The
‘etalls of the elements ahead and behind the crack front are
indicated for a general kth segment. For Sufficiently small
Virtual crack extension AP, the incremental area A A_ in
Egn.il) may be identifieq at this stage with the full aré% of
s ? Kth element. Average G at the mid-point of the segment
Oo' is evaluated by considering the stress and displacement
Components jinp the integrand of CCI in Eqgn. (1) with those in
the elements OABO' and coo'p respectively.

MQQ; Expressions for 20-Nodeq Singular Elements : Let OABO!'
form one of the faces of an 20-nodeq isoparametric singular
Slement With the Corresponding element with face coo'p
.ehlnd the crack front. Let the face OABO' be represented
én tl?e natural‘g}'—coordinate System (-1< ¥F,5<1). Referring
o Flg. 2, the shape functions for the element in this plane
are given (Zienckiwicz, 1971) as

Vis 41+ sF) s 531 (5% +5%; - 11852

t 12 (1 -%2) (g *55) (1 -%,2
tl/2 (1 -%2) (14 5%i) (1 -73,2 (2)

Figure 3 shows a typical FE mesh in the crack plane at the
cr?ck front. rThe nodal forces and displacements with
reference to Mode-I are shown in Fig. 4. Referring to Fig.

(9r Stress) singularity in the elements located on either
Side of the crack front is obtained. Consistent with the
above element shape function, inp the isoparametric
formulaplon the stress distribution a in the singular

b b 2

Oy (§,5) = -2 + by + ———-33Y+ b,3T + b, (1+%) + ———
(1+ %) (1+%) (1+ %)
T Pg (1+5)3 + b, g2 (3)

From the equivalent nodal forces for this stress
distribution, the coefficients by (K = 0,1,..7) are related
to the nodal forces Fy j+i-1 by the area integral as

T
Fy,j+i-1 = f (Nj(E,%)] 9y (§,5) dpdq (4)
AAq

where dpdq is an infinitesimal area of the element in the
real plane. In the natural domain, the above integral (Egn.4)
takes the form

+1 +1
T
Fyavisn =/ f iG55 0,503 |9] atas (5)
-1 1

where |J| is Jacobian transformation matrix. For 20-noded
singular element, the det|J| is conveniently expressed as

|g] = Jo + J1E + J, 35 (6)

where Jo, J and J are constants depending on real
coordinates o% the nodes. The coefficients J, and J, account
for the curvature effects of the crack front oof. For a
straight crack front 00' the coefficient J, 1is zero. Now,
using Eqgn. (6) in Egn. (5), carrying ~ out necessary
integration and simplfiying, the coefficients by (k=0,1,..,7)
are obtained. Nodal forces in Eqn. (5) are extracted through
the standard procedure of multiplying the stiffness matrix of
the element with the corresponding nodal displacements.

With reference to the shape functions given in Egn. (1), the
displacement distribution Uy in the element coo'p is taken as

Uy = ag+ ay(1+g') + a,g'+ B3 IFE)(5) + ag(1+g)2 + a (g2

*ag (1+g)2% 5+ a, (1+ €') (5?2 (7)

The constants a. (i = 0,1,...,7) are evaluated in terms of
crack opening displacements on the surface C0O0'D (nodes 1 to
4 and 13 to 16). Now, using the U© distribution given by
Egn. (7) in the element behind the crack front and the o
distribution given by Eqn:(3) and the associated geometrid
transformation of the element ahead of the crack front, MccI
expression for mode-I SERR, Gr in Egn. (1) for the kth
element will take the form

1 1
Gr(ayx) = ----- S JoyE®) Uy(g.s) 19] agas (8)
-1 -1

where Agx is the area of the kth element ahead of crack fron
in the real domain. The transformation for the 20-noded

singular element between (5,5) and (g',y') systems can be
obtained as
(1 +€92 + (1 +%)2 = 4 ana 5 = -3 (9)
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Carrying out the necessary integration, the expression for G
given by Egn. (8) can be further simplified in terms of a's
and b's (constants of displacement and stress functions) as

Gr(ax) = 1/(2 aay) [(by + b) + 4/3 by + 1/3 bg + 1/3 by) ag
+ (7/2 by + 4/3 by + m/2 b, + T/6 bs + 4/9 by ) a;
+ (1/3 by + 1/3 by + 4/9 bg ) a,
+(7r/6b2+4/9b3+ 7r/6b6)a3
+ (. 8/3 by + 2b; + 32/15 by + 8/9 bg + 2/3 by) a,
+ ( 1/3 b0+1/3b1+4/9b4+1/5b5+1/5b7)a5
+ (. 8/9 by + 2/5 by + 32/45 bg ) ag

* (/6 by + 4/9 by + 1/6 b, + m/10 bs + 4/15 b, )a(l-,]
10

Where ag,a3,..,a5 and bg,b r++-,b5 are the constants of
displacement and stress func%ions. The above expression can
be further expressed in terms of nodal forces and
displacements. Since the resulting expression is quite
lengthy it is not attempted to give it in this form.

Using a similar ‘procedure, one can derive the corresponding
expressions for Mode-II SERR, Gy and Mode-III SERR, Grry-

NUMERICAL EXAMPLES

A penny shaped crack in a cylindrical bar, a centre crack
tension (ccT) specimen and an edge crack under shear (ECS)
Sspecimen are analysed to demonstrate the capabilities of MCCI
technique to generate accurate numerical results comparable
with the available results reported in the literature.

Circular Cracks in Cylindrical Body : The diameter and the
length of the cylindrical body (Fig.5) considered are 10a,

where a is the crack size. a uniform tension of o, = 1.0 is
applied at the edges of the cylinder. The mesh cgntains 96
elements and 684 nodes with about 2052 degrees of freedom.
The size of the smallest element used along the crack front
is a/2o0.

The penny shaped crack considered in the present analysis was
analysed earlier by Sneddon (1946) who considered this crack

variation of SIF along the crack front for the penny shaped
crack 1is shown in Fig. 5. The maximum deviation of the
present result is 2.1 % as compared to Sneddon's exact
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CIRCULAR CRACK SULUTION
(SNEDDON 1946)
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solution ang about 1.4 % from Tracey's finite element result.

S-::\stiroen _CI(':aTck Tension (CCT) Specimen : The centre crack
o= ideali( T) specimen conflgura.tlon is shown in Fig.6. The
4 layer zation using 20-noded singular elements consists of
nodesy 854 of elements along the crack front and has 548
elemex’rt elements and 1644 DOF. 'The size of the smallest
i used throughout the analysls .is a/10. Due to double
analysi)s,: only 1/8th of the domain is modelled for the FE

:235 Astplec;men was ana.lysed earlier by Raju and Newman (1977)

il uri and Kathl'resan (1975). The present analysis is

c Orled out on 2 specimen with h/w = 0.5, t/a = 0.5 and a/w

refe.ancfeosr which results are available from these two

Shown oS F The varlatloq of SIF across the thickness is

cent > 1g: 6. Fozl- t‘hlS Specimen the SIF value at the
re is estimated within 1% by the present solution.

%f:{tg Crack shgar (ECS) specimen An edge crack in a
angular solid subjected to uniform shear is shown in Fig.

7. This is anal i
: > Ysed as an example of mixed-mode case. The
Specimen dimensions are h/w = 1.142, a/w = 0.5 and t/a = 1.0.

Elrll:t FE model used for this problem is of the same type as

result?f CCT specimen analysed in the previous example. The

- tshearbeo cc;mpared (in Fig. 7) with those of Wilson who
un i

VEEF wats. ary collocation method. The results compare

CONCLUSIONS

ggg;ifiedd Crack closur'e integral (MCCI) expressions are
ned for 20-noded lsoparametric singular elements. MccCI

c : :
rack in a Clrcular bar, centre crack tension (CCT) specimen
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