INVESTIGATION ON THE SINGULARITIES OF
ASYMPTOTIC SOLUTIONS IN STATIONARY
CRACK AND STEADY CRACK GROWTH WITH
ELASTIC-PLASTIC MATERIAL

T'M. GUO
Bundesanstalt flir Materialforschung and -priifung (BAM)
(Inter den Eichen 87, 1000 Berlin 45, Germany

W. BROCKS
Fraunhofer Institut fiir Werkstoffmechanik (FHIWM)
Wohlerstrape 11, 7800 Freiburg im Breisgau, Germany

Abstract: In the present paper the functional forms of asymptotic stress and
deformation fields of mode I stationary crack and steady state crack extension in an
clastic plastic material are investigated. The material is characterized by J,-flow theory
with linear hardening and power-law hardening. All stresses and strains of the
asymptotic crack tip field are separable functional forms of r and 8 which represent to
the polar coordinate system centred at the actual crack tip. The results of stress and
deformation fields for both materials are comparable.

1. Introduction

The investigation of the near tip stress and deformation fields with an elastic
plastic material is necessary for the development of fracture mechanics and has become
one of its central problems. The asymptotic solution for a stationary crack with a
power-law hardening material using deformation theory of plasticity, the so-called
HRR-solution /1,2/, supplies a theoretical basis for elastic plastic fracture mechanics,
but the elastic deformation is neglected in this solution. The asymptotic solution of
stationary crack with linear hardening material was also investigated in /2/, where the
important nonlinear term was neglected. Therefore, the solutions for both materials are
not comparable. This problem is intensified for steady state crack extension. For a
power-law hardening material a solution with logarithmic functions for stresses and
plastic strains in the active plastic loading zone has been found in /3/ under some
assumptions, but for a linear hardening material a stress field has been found in /4/
using a power-law function and in /5,6/ a complete solution for this material was
investigated. The different functional forms for both materials lead to mathematical
difficulties and the solutions are farther not comparable.

The issues are now, what functional form an asymptotic solution near the crack tip
must possess and why the solutions for both materials are different only for various
approximations. In order to answer these questions we will try to present in this paper
uniform functions for asymptotic solutions with an elastic plastic material for stationary
crack and steady state crack growth. The investigation assumes mode I plane stress and
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plane strain, small deformations, quasi static case, isotropic material and J,-flow
plasticity theory. 2

2. Constitutive Equations

We can first view both elastic plastic material

s with linear hardening and -
law hardening in Fig.1 and Fig.2. ¢ pover
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Fig.1 linear hardening material Fig.2 power-law hardening material

Op denotes the yield stress, €y the yield strain, E is Youn
tangent modulus. The incremental plasticity theory with th
and the constitutive equation can be written as follows:

g’s modulus and E, is the
e J, yield condition is used

&y = EI[(IW)GU - VO 8, « ks, M
where
3w0, .
= 7F?: S, 20 linear hardening
A= %[n(%;)n-l— 1 ]c;_‘e G, 20 power-law hdrdening @

i
(@]

G, <0 elastic behaviour

with w = o'l - 1.

Basing on the assumption that a proportional loading condition is considered we

can integrate the above constitutive equations (1) and (2), so that they become the
following form:
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A= 5 [(.0__) - 11 o,2 0, power-law hardening
0
= 0 O, < 0y elastic behaviour

where in (1), (2), (3) and (4) Gjj is the stress tensor, &; the strain tensor, O, Lh.c
ctfective stress, Sij the stress deviator, Sij the Kronecker delta and v Poisson’s ratio.( )
is the material time derivative. The above constitutive equations (1), (2), (3) and (4)
together with the equilibrium equations

c;,;=0 ($)
and the geometric conditions
1
g =5 (i j+ ) 6)

supply the investigation basis for the stationary crack and the steady state crack growth
problem.

3. Asymptotic Solution Form

In the following we investigate the crack problem for both plane stress and plane
strain mode I cases. Let x, y be a Cartesian coordinate system of fixed orientation
travelling with the crack tip such that the x-axis is in the direction of the crack
extension. Similarly, let r and 8 be polar coordinates corresponding to x and y in Fig.3.

y

«—u—a'

Fig.3 coordinate system Fig.4 growing crack tip field
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In the Fj 3 i i i
considon s g3 ais the crack growing velocity. For the stationary crack a s zero. We
Irst the asympiotic solution forms for linear elastic material. They are .

0, {r, 8) = Aoy ':6‘,./(6)
ey(r, 0) = Aeyr ~E,40) (7)
ulr, ) - u*; = Aegr =1y (0)

Wh°m3=05andAg K .
- : 0 =K/ V21 K is the so- — .
rigid body displacement. o-called stress intensity factor and y i the
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4. Results

In this paper the stress and strain distributions are presented first for plane stress
around the crack tip for a stationary crack with a linear hardening material with o =
0.05 and a power-law hardening material with n = 2 in Figs. 5,6,9 and 10. For steady
state crack extension the stress and strain distributions are given for a power-law
hardening material with n = 2 in Figs 8,12 and for a linear hardening material with o
= 0.05 in Figs. 7,11 which are given in /4,5,6/. It is remarkable, that the stresses and
strains for both materials for a stationary crack as well as for a steady state crack
extension are approximately comparable, only the stress o, near the crack flank for
both materials in the case of the stationary crack is different. Further the stress
distribution for a power-law hardening material for steady state crack extension is
compared with the results for the same material assuming the small scale yield
condition from a finite element calculation from /9/. They supply also comparable
results in Fig. 13. The values for singularities and unloading angles are as follows:

stationary crack: s = 0515 for linear hardening o = 0.05
s = 0.521 for po.-law hardening n = 2

s =0.178 ep = 1214  for linear hardening ¢ = 0.05

steady growing crack:
s = 0.105 Op = 1102  for po.-law hardening n =2

5. Conclusion

In this paper the asymptotic solution structures for both a linear hardening material
and a power-law hardening material has been investigated in both limiting cases,
namely stationary crack and steady state crack extension. The solution structures have
the form of (7) and the stresses and strains have the same singularities. The angular
functions for stresses and strains depend on the yield strain €y- The displacements at the
crack flank are used, so that the nonlinear term Oy / O in the comstitutive equation
becomes so[ﬁx(n)+ﬁy(1t)] / o, by the field equation formualtion and the asymptotic
solution leads to an eigenvalue problem.

We have presented the complete solutions for the asymptotic crack tip stresses and
strains with a linear hardening material and a power-law hardening material for the
stationary crack and steady state crack extension. The stresses and strains for both
materials are comparable. We will try to explain the approximate comparability for
linear hardening material with o = 0.05 and power-law hardening material with n = 2.
Let us consider the asymptotic stress behaviour G = Acor"gij(e) which has a singular
form at the crack tip. The linear hardening material has an approximation of the g-g-
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curve with a constant value E,, but the power-law hardening material is approximated
with its actual stress which has a singular form at the crack tip, so that the strain for the
power-law hardening material at the crack tp is higher than that for the linear
hardening material. Only the amplitude factor for the asymptotic solution remains
undetermined which should be dependent on loading and geometry conditions.
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