INVESTIGATION OF A KINKED CRACK SYSTEM WITH
GENERALIZED STRESS SINGULARITIES BY MEANS
OF THE INTEGRAL EQUATION METHOD

W. MEINERS and K.P. HERRMANN

Abstract

The problem of a crack running in a homogeneous matrix material towards an inclu-
sion with different material properties and kinking at the material interface into an
interface crack is discussed, using a modified CT - specimen as an example. For the
sake of the solution of this boundary value problem a singular integral equation for
the density w(t) of the corresponding complex potentials ¢;(z) is formulated. The
analytical treatment of this equation shows the existence of complicated eigenvalues

at the kinking point.
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1 Introduction

The modified CT - specimen (cf. Fig. 2) divides the complex plane in two simply connec-
ted domains Sp and S; which are related to the matrix and the inclusion, respectivly. The
matrix is loaded by two known, opposite equal forces F}, acting at the points z, (n = 1, 2).
The stress and displacement state is given in terms of Kolosovs complex potentials ¢

and .

The complex potentials ¢,(z) (z € Sj, 7 = 0,1) decompose into a sectionally holomorphic

function ¢(z) and a function ¢*(z) due to the forces F;, = X, + Y, in the following way:

0i(z) = @(2) +¢°(2), z€S; (1)
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where

2
* = § _ Xn + lYn
7 (Z) n=1 mo—) ln(z B zﬂ) (2)

For the i i iti
matrix (z € Sy) this decomposition is obvious. In case of the inclusion it must be

kept in mi *
. 1;; t mind, that #1(2) and ¢*(z) are both holomorphic in $; hence #(z) is holomorphic
i o S

1 too. This kind of decomposition is not really necessary, but simplifies the resulting

equati i
quations. In the same way the potential y;(z) (z € S;) is decomposed as

Vil2) =¥(2) + 97(z), :es

i (3)
where
2 X Y
¥'(z) = [ Knmi¥y | E(Xa4iY)
; :c027r(1 ooy In(z - 2,) + (it ) 1o 2nJ (4)

10] the SeCthIla.”.y hOlOHlOI phlc ful]CthI]S wp(z a.nd Y(z
( ) ( ) the fC“Oi ]ng Sy stem Of bounda‘I)’

PE(2) +tp(t) + pE(y) = A )+ o ;

ﬁ*(t)¢*(t)—t¢’*(t)—¢*(t) = 2u*g(¢); He e ®
with f%(t) and 9%(t) defined on Li by

5t = A(a,f(r)+iaf(r))d‘r — ) (6)

95(1t) = u(y) +iv(t) — g*2(2) (7)

Here, th i = »
€, the functions f %(t) and ¢ £(t) are due to the known functions ¥"(2) and 9*(z) [1]

The int, i ‘
— efrat.lon constants ¢, are calculated during the solution process while x* and u*
€ elastic parameters of the matrix and the inclusion.

In order to solve the i
€quation system (5), the boundar iti i
y conditions h t
Therefore, the latter are given by e to be specifed.

a,‘:‘(t)-f-ia,*(t) = a;(t)+ia,"(t);

u+(t) + iv*(t) = u‘('t) + lv—(t), te L; (9)
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which leads to

fE(t) = —f%(t); te Ly, LY (11)
Aty = f(); ter (12)
gt(t) g7 (t);

2 The singular integral equation

The sectionally holomorphic function ¢(z) can be written in terms of a Cauchy integral

with a density w(t), t € L as follows

’ _ L fuw(r)dr g o0 o L/w(r)dr
»9(2)—27”./ r—z ' c,o(t)-j:?w (t)+27ri T—t tel (13)
L

The last equation is known as the Sokhotskii-Plemelj formula for the boundary values of
a Cauchy integral. The integral in this equation is singular and must be understood in
the Cauchy principle value sense. In an analogous way as the function ¢(z) to w(t) the

sectionally holomorphic function ¥(z) is related to a density §2(¢) according to

oy b [ Qr)dr $r8 o lag 1 [Q(r)dr
u)(z)—Qm'/ rT—z ' w (t)—iQQ (t)+27ri_/ r—t '’ ek {14)

The introduction of the boundary conditions (11, 12) and the Cauchy integral represen-

tation of ¢*(t) and ¥*(t) into the boundary equations (5) leads to a system of equations

w(t) +tw'(t) + Q) =0; tel (15)
(Kw)(t) + ({KO +KD@) = [HE) + /(0 + 205 te L, Ly (16)
EE((Kw) + )0 - Ty (RS + 0 + TRD + @) - 974() = -
1= ((Ke) —)(0) = = (1K) =0 + (KD = 0] - 9=(1); ‘
where K denotes the operator of singular integration.
(Kw)(t) = %/“’ir_)‘:r (18)

L
By using the first equation (15) to eliminate the density ©(#) from the second set of

equations (16, 17) the desired boundary integral equation is obtained in terms of w(t).

(Mw)(t) = A()w(t) + (kw)(t) + (kaw)(2) = h(t); teL (19)
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The integral operators ky and k, are given by

1 ot

k £) = = d7 7 — ¢ ( dr

(kiw)(t) wi_/L{B(t)+C(t) [EF—[~IJ}MTT_)t (20)
C(t) dr  F 1§ P §

(kyw)(t) = &8 ér T-1t w(T)dr_ Ct) [#~1 ,

2)(t) L) /L[d'r r—t] T—t ——m' /L‘r—tw(T)dT (21)

The right hand side A(t) of eq. (19) is

h(t) :{ PO+ 042 rep,
9t () + g7 (1); te L

The piecewise constant coefficients A(t), B(t) and C(t) in (19) are

0.
A(t) = i 2, l: 7
“ { Liad + sz Bl = { I-st 14—, Ct) = { ,;'_ + el Ly

aut = Te T E
“ = Wt T W= Ty teL]

3 The behaviour of M in the nodes of L

In -ge.neral it is impossible to solve the singular integral equation (19) using the charac-
teristic equation concept (cf. [2]) if there exist nodes in which the curve system is not
-Smooth. In the present case, the nodes of the cyrve system [ are the crack tip of the
m-terface crack and the kinking point, respectivly. Let to be one of these nodes and denote
w1th.I‘1, -+, '~ the curves with ¢, as a common point. [t is noted, that ¢, s either a
starting-point or 2 terminal point of each curve 'y (n = y---sN). The density w(t)

1
belongs to the class Hy(to) with a derivative of the class H*(t). Such a function can be
defined as follows

O = anlt = to) 4wy, (1 = 1) ter, (23)

Wth a genera, Wi

. 1 g “y complex pPower /\ whose real part is restricted to 0 < %(/\) <1 Further

n the (Z()e“i .e 3 e | e Wi ‘ 11 y
clents Win and Win, A and A are und I'StOOd as indices. h > power X is an

eigenvalue of M| if the dominant part of M is nullified by w, (Mw)(t) ~ 0. For the sake of

L f(r—t)dr

1 FirA

mi) I~ am\ (=) e, ann(A) = Fre 5., (24)
F tsingd Y
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where the upper sign is used if ¢, is a starting-point of [', and the lower sign, if ty is a

terminal point of I',. Using this formula, the dominant part of &, is given by

(e)(t) ~ 3 Rall) feldr

T T—7
n T,
~ D bt (Gma(Asn(t = to)* +am(Non(t—t)') 5 tel, (25)
with the definitions
d7 7 —t
= i gy |21 - 2
ia(t) 3gg{8(t>+cm [W_[ 1]} rer, (26)
ktmn = lim ky ,(2) (27)
t—to
In a similar way, the dominant part of k; is given by the following expression
¢ F—{ — ‘ () (E — £, !
(kaw)(t) ~ _C(-)/T to (1 — to)w'(1)dr N C(t)( ‘ o)/w (7)dr
e T—1o T—1 me T—t
L L
~ Y Culkrm — kan) [/\am,,(/\)(t — t0)* + Apa(A)(t — to)f‘] (28)
with the definition
t—1o
= )
Fan = lim gy t€La (=0
By using these results, the dominant part of M is found to be
(M)(t) ~ 3 (rma(Nonn + s (N3, (t = to)?
+ 3 (sm(A)mn + rmn(;\)w;\") (t—to)*; tel., (30)
with the definitions
Tmn(A) = Ambmn + { B + Cpn [e2en=am) _ 1]} g, (2) (31)
5m"(/\) = /\Cm [e—Ziam _ e—?ian] am"(‘\)eziam,\ (}.2)
If A is an eigenvalue, then the following system of equations is obtajned
Z [rm,,(A)wM + sm"(;\)@v;\n] =0 (33)
Z [Smn(/\)WAn o= rmn(X)QXn} =0 ((}4)

n
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which leads to the characteristic equation
det(T) =0 (35)
35

where T is the matrix of the coefficients of the system of equations (33, 34) and can be
written as a systemn of 2x2-submatrices Tn(A) defined by

Tmn(A) = ( rmn(/\) Smn(’i)
Sma(A) Fon(X) (36)

3.1 The tip of the interface crack

At the tip of the i i
. p € interface crack the curves r, = LYand T, = L meet in a smooth manner,
€Nce Smn = 0, ¥Y(m,n) is valid. The eigenvalue equations (33, 34) decompose in two
uncoupled equivalent systems of equations for the unknown quantities wy and @5. Hence
the eigenvalue equation reduces to
2

Z Tmn(Awin = 0; m=1,2 (37)

n=1
¥ t i 1 1

At the interface crack and the bonding line, respectivly, the coefficients of the integral
€quation are specified as

44] = 0; Bl = 2,
A, = Ko+ 1 KL+ 1. _ Kg—1 KL — 1 38
2 %ﬂo * i#: P Ba= ‘i/to T -
The crack tip is a terminal point of I'; and at the same time a starting-point of r,.
Therefore, the matrix T' can be described as follows

2 cos A ‘)(- Ccos TA
T=(rm.) = isinm “\Tisinmx t )

( cos ) A
B, (ism T l) Az = lecsc:;zrr

The characteristic €quation is given by
det(T) = 24,2057 28, =0 (40)

isinw

The solution of this equation leads to the following eigenvalue
I 1, —
/\:§+771an Bz:i-{-iﬂ
< .‘12 + 82 2 (41)

where the quantity

A — B, _ Kipio + pl

Ay + B, Kopty + po
Is known as the bimaterial constant which s related to the oscillating stress singularity
Y=-1/2 +:3.

(42)
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3.2 The kinking point

At the kinking point the three curves ['; = L{,T; = LY and I's = L, join in a non-smooth
manner, thus leading to complicated eigenvalues. The eigenvalue equations form a linear
system of order 6. The characateristic equation can be factorized in two parts. The first
eigenvalue belongs to the problem of the homogeneous quarter-plane formed by the curves

L} and LY. The characteristic equation leading to this eigenvalue is known to be (cf. [3)

sin(rA/2) = Asin(7/2) (43)

The second eigenvalue belongs to the problem of a quarter-plane bonded to a half-plane

and is defined by the equation (cf. [4])

AB? +2Bafi+ Ca® +2DB +2Ea + F =0, (44)
with
A = 4sin®(7))[sin?(7X) — A?], B = 2A%sin?(r)), C = sin?(7A) =A%, D = - B,
E = (2X% — 1)sin*(7\) + sin(7A/2) — A2, F = sin?(3mA/2) — A?
and the material parameters o and 3
_ M1mo — piomy _ m(mo —2) — po(my —2) (45)
Himo + pomy Homy + pymy
where the constants m; depend on thé associated stress state.
41 —-v lane strain;
m; = { (4 i) P 7=0,1 (46)
= plane stress;

d)*:
?.

Fig. 1: Modified CT- specimen
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Fig. 2: Kinked crack
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