HIGH-ORDER ASYMPTOTIC FIELDS AT THE APEX
OF A NOTCH IN A POWER-LAW HARDENING
BIMATERIAL

Yu SHOU-WEN and YANG MING
Tsinghua University, Beijing, China®

ABSTRACT

In the present paper, the basic formulas of the singular field near a notch tip in a
power—law hardening bimaterial are derived and the zero—order asymptotic solution with
the HRR singularity are obtained. In the light of different notch open angles and hardening
exponents the relation between the singularity of stresses and open angle of a sharp notch
as well as the hardening exponent is given. Using the method of asymptotic analysis and
interficial displacement—match technique, the singularity of the stresses corresponding to
the first—order solutions and some typical groups of figures of zero—order and first—order
stress distribution for bimaterial with different open angles of notch are also given.

K(Ey words: notch problem, power—law hardening bimaterial,
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INTRODUCTION

In composite materials and micro—electronic packages, some geometric figures with differ-
ent open angles of notch between bi—, or multi— materials often exist as shown in Fig 1. Tt is
a notch problem of bimaterial. The interface crack problem is a special case B,=8,=0).
The investigation on the fields near a notch tip of bimaterial in multilayered film and
micro—electronic packages have begun recently. In the situation of notch in a power—law

hardening bimaterial with speéial open angle ﬂl = g n or 32—7: the relation between the

singularity of stresses corresponding to zero—order main singular field s, and the hardening
exponent of power—law hardening material on a rigid basis was deduced by Duva " , the
relation between f# and o under a general situation and the solution of angular distribution
of stresses had not been investigated. The interface crack problem was studied by shih and

(23,0 sy

Asaro . Gao and Lou obtained the solution with HRR singularity. But an ap-

proximated model of rigid substrate with U’(O ")= 0 was adopted. Wang ® investigated

the singular field with the HRR singularity of interface crack, but the material below the in-
terface was assumed to be linearly isotropic, i.e. n,=1. Zhou and Yu ‘7® ysed the
asymptotic analysis with interficial displacement-match technique to deduce the close form
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solution of near tip fields of antiplane mode—ll interfacial crack problem, Using the solu-
tion obtained by Li and Wang, ‘' xija investigated the high—order asymptotic solu-
tion of bimaterial interface crack problem and deduced the zero—order and high—order
asymptotic fields in a certain range of material constants. This problem had also considered
by Aravas and sharma 'V and Champion and Atkinson ¢'? .

Based on the Ref.[7-9], the high—order asymptotic solution of near tip fields of notch
In a power—law hardening bimaterial is studied in this paper. The solutions in this paper

satisfy asymptotically the continuity conditions of stresses and dicplacements on the inter-
face.

FORMULATION OF THE PROBLEM

Consider the problem of a bimaterial notch with arbitrary open angles, as shown in
Fig.1. The material 1 and 2 are both power—law hardening materials. Let E‘,v’,a”’,
n, and @, B=1,2 corresponding to the material 1 and 2, respectively) denote the Young’s
modulus, Possion ratios, yielding stresses, hardening exponents and hardening coefficients
of bimaterial, respectively. Here, we assume that 0;>n, and let n=max (n,, n,).

The constitutive relations can be expressed as the following dimensionless form

3 . )
suz(l+v)a-”_—ya“5u+§zd' S” (2.1)
B o . ;
where e = — g = — nis the hardening exponent.
€, G,

The equilibrium equation is satisfied automatically by introducing a dimensionless
stress function @, ;. Tn polar coordinates the relation between the stresses and the stress

function is
2

fo, =r "0 4+ 0
{o, =" .2
’Lr,g —( oy

where <b=d>/(aoLz), = é L  denotes the characteristic length  of crack,

St _2
(Y=a/ar () v
For a plane strain problem, the com patibility equation is
r ‘l(reg)” +r —z(s’)" —-r 7‘8/’ —2r 72(rs,9)’= 0 (2.3)

The above equations from (2.1) to (2.3) consist of the basic equations of the plane
strain problem for power—law hardening materials.

Assume that there is a separated form of HRR singular fiels at the near tip of notch.
The two beginning terms of the asymptotic expansion of the dimensionless stress function
®(r,0) are expressed as

D(r.0) =K, r’ d(6) + K,r"® (0) (2.4)

where the ripple denotes the function of the angle 6, i.e. the angle distribution function.
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IMme compatibility equation can be written as

1

Kor'o Qs + K Trie ™™ 7000 4 okt g2
T 98 N R o MY | (2.5)
n which . .

{n; =& (s, —F, +(s,~2s, - DE, —2s, - DE,

Q) =% (5, +As, ~2F +(s, +As, s, + As, - nE;

{ ~ 2(30 + Asl — ])s'g‘ e
~ ~ P

.O: = Ef — s, — 2)[7!(&0 -2)+ 2]5'" —2[n(.\‘o —-2)+ ”8'0..

L
’Qf =z7 - [n(.ro —2) + A.\'l][n(s0 —-2)+ As + 2)5:" —

2An(s, —2)+As, + DE,, T=K,/K,
The governing equations of zero—order and first—order of singular field can be de-
duced from Eq. (2.5). The following three group conditions are required to determine the

solution of the problem

1. The traction—{ree boundary conditions of notch surfaces are
=0 a, | =0
[ a,l s

0'0mx-g, 0'6= —(x-8,) @7
irﬂ’@-x-ﬂ‘ =0, Tolom gy =0
which can be recast as the following form expressed by stress function ,
)=, (x—B)=0 (—n+p)=B (—n+p)=0 (k=0,1) @.7)
2. The stress continuity conditions on the interface are .85
Tlocor =Fglgma- > Trolomor =T4ls0 &
5 - 4 o - /
or '5&(0+)=<Dt(0 ), ®k(0+)=0k(0 ) (k=0,1) (2.8)
3. The continuity conditions of displacements on the interface are 5.5
U lgor =u,lo (2.9
It can be written in concrete form as
P e KT E 0 + [, TKT M -
A2 —(n, —n s, —2) - - Ay = = A )Msy ~2D 445, ~p =
a KM TG (0)) - a, TR : )
+ o - —(n, — sy —2) + As
+K1r-4n,—n(:u—z)me 09— © )]+rK1r ( 0 —D+As,
an ag
@ 0")—a, 0 )}=0 (a=rp) (2.10)

The displacement continuity conditions are different for the zero—order and first—or-
der asymptotic fields, as will be discussed in the following sections.
Eq. (2.5) and the conditions (2.7), (2.8) and (2.9), which describe the asymptotic solu-

tions of the notch problem of power—law hardening bimaterial, consist of a boundary—val-
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cquations. The minimum step is about 0.5 ° » as is controlled by the Newton~Raphson
automatic control program. The accuracy of solutions in the present paper is controlled to
be better than 1075,

THE ZERO-ORDER ASYMPTOTIC SOLUTION OF
THE NOTCH PROBLEM ?

From (2.5) and (2.6), the governing equation of the zero—order asymptotic fields ex-
pressed zby stress function can be deduced as

d
{d? T s, = ln, (s, - 2) + 2]}{;::“[%(2_3,)50 +® 1} +
s, — Dln (s, —2)+ l](a:o*"'&)o)' =0
(k=l,0<9<n—ﬂl; k=2, —T+8,<60<0) G

The three &roups of definite conditions are as follows
1. The traction—free boundary conditions on the notch surface are
{oo(n ~8)8,(x—8)=0 -
50(—n+ﬂ2)=d~>o(—n+ﬂz)=0
2. The continuity conditions of stresses on the interface are
P,0")=3,0"), ®,0°)=8,0") (3.3)
‘ 3. When =0, the first term in the braces in (2.10) is far bigger than others, So the con-
Unuity conditions of displacements can be rewritten as
i 0°)=0 (a=rg) (3.9)

(3.2)

This is €quivalent to that the material 2 is considered to be rigid.

wPich can also be expressed in form of stress function

[6,00%)—s (s, — 28,0 =0

(B (0") + By = Dn sy~ 4 1) =5 (s 218,00 =0 09
(] o 0

The zero—order asymptotic field and the singularity of stresses So in thé upper material
can be obtained from (3.1), (3.2) and (3.5). So is related with the hardening exponent
N, and the open angle 8,. s, = (2nl +1)/ (rlI +1) for B,=0, i.e. the interface crack. The
solution of the problem can be obtained from (3.1)—(3.4).

In this paper, the notch problem of bimaterial with n; =3 is calculated. The singularity
of zero—order stresses s, and the stress angle distribution function 7 ’(9) are shown in fig-
ures numbered from 2 to 9 |

The singularity of stresses s, decreases with the increase of open angle f,. In the case
of =90 "° | the singularity exponent of stress s,—2 is equal to be —0.2126, which is consis-
tent with be result of Duva ‘| The change of Sy with the hardening exponents n,:

The results show that the singularity of stresses decreases with the increase of n,.

304

THE FIRST-ORDER ASYMPTOTIC SOLUTIONS

As shown from (2.5), the governing equation corresponding to the first—order
ssymptotic fields has three different forms for different value of n, (k=1,2).

The traction—free boundary conditions of the notch surfaces and the stress continuity
conditions on the interface are the same aseq. (3.2) and (3.3), respectively.

From the displacement continuity conditions in (2.10), the first term in the braces has
been used in the zero—order fields. The two term in the first syuare brackets are the
first—order fields of displacement in the upper material and the zero—order fields of dis-
placement in the lower material, respectively. From the exponents of r of the two terms, we
know that the following two different cases exist.

(1) For 0<Asl < — (nl —nz)(so —2) and n, > 1, we have
@,0%)=0 (a=r,0) (1)
which shows that the displacement fields corresponding to the zero—order solutions in
the lower half—space will be matched by that corresponding to the second—order solutions
(of higher order solutions) in the upper half-plane. This case is not discussed here.

(2) For Asl = —(nl —nz)(so-z) and n,>1, we have

2, TK'E) 0°)— 2, K¥3® (07)=0 (@ =r,9) (4.2)
Let I“=azK:’_"’ /a,. Then, we have

a3 0H-8 (0 )=0 (4.3)

., .
which show that the displacements continuity conditions on the interface corresponding to
the first—order solutions are obtained by matching the zero—order asymptotic displace-
ments in the lower half—plane with the first—order asymptotic displacements in the upper

half-plane.
(4.3) can also be rewritten in the form of stress function

8,07 ~s5,6,-28,0"-c,
{ (4.4)
0" ) +[4n (s, — )1 + 8, =D =56, ~ 21, (0") = C,
From above discussion, and assumed n,=5,n,=3, then we have
Asy = —(n, —n)s, -2 = ~2s, —2) (4.5)
Then the singularity exponent of the first—order asymptotic solutions of stresses s;—2is
J'—2=SO+AJ‘1—2=——JO+2=—(10—2) (4.6)

And the governing equation of the first—order fields corresponding to two cases dis-
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cussed above are

Q=0 Osasn—ﬂl,

1 ~n+B8,<0<0 4.7

respectively. Here a; is assumed to be unity, and the ratio of @, and «, is chosen to be 50.
The possion ration in Qg is related only with the material 2,and let y=0.3. Using the shoot-
ing method and the fourth—order Lunge-Kutta method with constant steps, the following
¢xamples are solved.

a) B,=0° £,=0°

For the interface crack in Fig.6, the magnitude of the first—order stress field is much
bigger than that of the zero—order stress field. The singularity exponent of stress is
$—2=0.166667.

b) B,=45°, By=45°.

For the notch problem in Fig. 7 the first—order stresses are much bigger than the above
2ero—order stresses. The stresses in the near tip of the notch with open angles §,+8,=90 °
distribute more smoothly than that in the interface crack. The stress singularity exponent
$1~2is equal to 0.165085.

For several cases, the angular distribution function of the first—order asymptotic solu-
tons are also shown in the Fig. 8 to 10.

CONCLUSIONS

After investigating the plane—strain problem of interface notch of a power—law hard-
ening bimatcrial, the following conclusions can be shown.
1. For different open angles (8,) of notch and hardening exponents (n,), the related

crease of hardening €xponent, and then disappears for the perfectly—plastic materials (n—
©0), as holds for any open angle of 4,.

2. The zero—order asymptotic fields with the HRR singularity at the tip of a notch
with several open angles (f,) are obtained. These solutions satisfy asymptotically the conti-
nuity conditions of stresses and displacements on the interface.

3. Based on the zero—order asymptotic solution, using the asymptotic analysis as dis.
placemem—match technique the first—order asymptotic fields at the tip of notch are calcu-
lated corresponding to several open angles. The results show that no singularity of stresses
exists and the angle distributions of stresses exist and the angle distributions of stresses are
much bigger than that of the zero—order asymptotic fields. These solutions also

terface.
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