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ABSTRACT

'he paper considers a gradient approach for the estimation of
local strength of brittle materials in a stress concentration
zone. The specific forms of gradient strength criteria for
nonuniform stressed state and their combined variant are for-
mulated. The relation of the proposed gradient criteria with
linear elastic fracture mechanics is demonstrated.
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GRADIENT APPROACH

The material characteristics such as the strength 1limit Ob

determined under uniform stressed state are used to calculate
the strength. The value 05 is often assumed to be also valid

for nonuniform stressed state of the material of real structu-
res. However, validity of such an assumption for elements of
the structures with stress concentrators is doubtful. This is
cspecially so for large values of the concentration factor
ad = (max Oi)/p , where (max O&) is the first main stress

in the vertex of a concentrator; P 1is the nominal stress.
The effective stress concentration factor a,= Ob/p* defined

45 the ratio of the strength 1limit and the nominal fracture
itress is usually less than a . Hence, at the moment of
‘rack initiation (max O&) > OB . Therefore, in case of brit-

tle fracture, i.e. in the absence of any considerable equali-
zation of stress peaks at the expense of plastic deformations,
we may speak about a local increase of material strength in
the mostly stressed point. This effect is pronounced in case
of brittle and structurally-inhomogeneous materials, such as
lron, marble, graphite, phenolic and epoxy glasses.
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At the moment of crack initiation the value of (max O,) 1is
called the local strength limit O, which is not a co;stant

value and depends on the d
4 . ' S on egree of the stressed state i—
ormity in the vicinity of the tip of the most dominantnggzgi.

9;= lgrad 0,1 / (max 0,) (1)

which is calculated in th
_ = e concentr
solution of the corresponding probl:;?r YEEEess heom B @laFtie

FORMULATION OF THE CRITERION.

Th < i

nofisxgiglmental results ‘on determination of strength of phe-

ronts. fou§§ogy g}asses under stress concentration conditions

ot 52 literature ( Serensen and Strelyayev, 1962:

the inorend ofrié%Z{eé% 1963%. According to these aﬁthorsl
: reng in the most i ’

be described by the functional dependence ISAgeENle pelas &3

Ox= Opfl9y) (2)

Th i i
exgeg}zzﬁzéqlda{; )It i: degi;mineg on the basis of special
that a dependence-of the fggme VAEELERRT Eng PRI, L2BH)

= n
a,= 0, [ 1+ B g} ] .
describes satisfactori
5 ily the experiment )
th - ental results ob
€ AG-4s and 33-18s phenolic and epoxy glasses.talned for

Tt i :
turésefgﬁgnt(quopaShln and Suknev, 1987) that for the struc-
2 = 1 selrfth a prack—txpg strain concentrator, only with
0l streéses obtain thg finite values of the limiting nomi-
gl o bodyp - h:&?s;w;ﬁe, it either will be impossible to
P ) e crack, or it’ll fail und

ing. Hence, ghe gradient strength criterion satisfyiggziig

Oy= O, [ 1+ L,g, ] ) (41

is the parameter which has th i

e length dimensi
depends on the properties of material, i.e 3152 agd
the characteristic size. ’ o '

where L1

RELATION OF GRADIENT CRITERI
ON WITH
LINEAR ELASTIC FRACTURE MECHANICS

It has been sho
wn (Legan, 1990) that the parameter L1 should

be i
connected with the characteristic of fracture tougness of

th i i iti
€ material, i.e. the critical stress intensity factor

1s
ollows KIc ,

_ 2 .2
Ly= = Ko / Oﬁ (5)
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fn this case, for the Griffith crack concentrator, gradient

criterion (4) gives the well-known (Sedov, 1970) equation

iy a (6)

Py= K1

where d 1is the crack length.

'o prove this, it 1is necessary to use the solution of the
problem of uniaxial tension of a plate with an elliptic hole
(Fig.1) and not the asymptotic expression for stresses in the
sicinity of the crack vertex. For b - 0 this solution gives
a more precise history of stress
distribution in the wvicinity of
the vertex of the crack-type con-
centrator. The mentioned solution
is presented in some papers (Mus-
khelishvili, 1966; Sedov, 1970),
where it is written as complex
stress functions in special com-
plex coordinates. Using Kolosov's
formulae we can obtain the exp-
ressions for the stressed state
components. It is then necessary
to turn to real coordinates of
the problem. After transition to
real coordinates we can write the
distribution of the first main
stress Ol(x) over the dangerous

section. By virtue of the problem
|grad Oil = |60&/6x|

P

Fig.1. The problem of
uniaxial tension
of a plate with
an elliptic hole. symmetry,

Differentiating the function Ol(x) in the x-axis, determi-

ning the values .of |grad O&| and (max O0;) at x =a and

substituting them into (1) yields the formula for the relative
gradient 9, in the concentrator vertex as

g,= (@ - 171+ 5 /4, (7)

where Q4 =1 + 2 —%— is the stress concentration factor;
d = 2a 1is the hole size in the dangerous region.

Substituting (7) into (4), the expression for O, becomes

g,= @, [ 1+ (@ - 1) ¥ (1 + _Eé*) L, /ad ]

The nominal stress at the crack initiation p,  is equal to the
maximum stress O, divided by the concentration factor a4 , i.e.

1 a-1 1
P % T gy /e (8)

I
In the case of the crack-type concentrator, for A - © we have

a a

—
D= 05 4 LI / d (9)

69




Substitution of (5) into (9) gives

Hence, the well-known equation of determination of the nominal
fracture stress Py, 1s obtained for the case of the Griffith

crack. Thus, there is interrelation between the gradient
criterion (4) and the linear elastic fracture mechanics,

Formulation of a Combined Gradient Criterion. After the
interrelation between the gradient criterion (4) and fracture
mechanics has been established, it isg worth to note that the
mentioned form of the criterion is not the only one case in
which this interrelation exists. For example, taking into
consideration the gradient approaches and experimental data in
the fatigue region (Afanasyev, 1953), the gradient strength
criterion can be written as

0,= 0,

* 1+ ngl (11)

Since in the Case of the crack-type concentrators 9, - w,

then both criterion (11) and criterion (4) will give the same
results. However, for stress concentrators, other than cracks,
Criteria (11) and (4) will give different results. Thus, at
the same material characteristics Ob and L1 , there are two

different gradient strength criteria. 1In this case the advan-
tages of one Ccriterion over the other are not evident. A com-
bined variant of the gradient strength criterion would be

0y= 0, [ 1-B+ yfgz‘I_Ezgz“ ] , (12)

where § is a variable parameter ( 8 > 0 ),
When B =o0 , the combined criterion transforms into (4), and
when B =1, this criterion changes into (11).

For experimental results obtained on a particular material in
4 nonuniform stressed state we can fingd such a value of the
barameter B at which combined Ccriterion (12) will describe
these results better than the criteria (4) and (11). At the
same time, for the crack-type concentrators, criterion (12)
will give the same equations as those of criteria (4), (11).

FURTHER CORROBORATION OF RELATION BETWEEN
GRADIENT CRITERIA AND FRACTURE MECHANICS

The results obtained allow a hypothesis that the gradient
strength criteria lead to equations of linear fracture mecha-
nics in a particular case of the crack-type stress concentra-
tors. For further corroboration the well-known solutions of
problems of stress concentration, which permit the limiting
transition to the crack-type stress concentrators, can be
used. These corroborations are divided into proved for
the particular cases of plane (2-dimensional) and space
(3—dimensional) problems.
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“lane Problem.

xtension of a p
ti{on is known
graph (Sedov, 1970)

B B e s

i ial

Let us consider the plane p;oblemwiicﬁlggiu-

lste with an elliptic %ogev(Fz%;Q) Hel 8o10-

i ili 1966; Sedov, - o=

(MuSkhellShvi;}%he formulae which glvelthe dlin

presen tribution of the flrstthal
stress O& in the criti

region, i.e. in the direc-
tion of x-axis as

P

2
x(x2— a2+ 2b7)

6,= P 7372 (13

1 (x2— a2+ b)
The maximum value of 61 is
Hence,

attained at x = a .
a =12 % . It should be noted
that @ > 2 since we a}ways
have that a 2 b By virtue
of the problem symmetry,

|grad O&I = |60i/6x|
P Taking into account that

= d a 22,

i ial a=d4a/2 an

he problem of biaxia o

Fig.2. thegsion of a plate we obtai i (az— Y e
with an elliptic hole. |grad le - ap

ne max O = Q jo] then by definition of i we find that
( ) ’
RS e ( 1) ’

14)
g,= (@®-2) /4 (
i i bined crite-
“urther, substitution of this expression into com
5an (lé) gives the value of 0O, as
i = L, /ad ]
= - + v/ﬁ + (@ 2) L,
o0, (18 ,
= i.e.
The nominal fracture stress p,=0, /Q ,
== 15
1'B+J_V’EZ+(a2-z)L1/a] (15)
Py= Op a a

i i thematical
h ok | lliptic hole into ma
e ko tran51tlonjﬁf égl;ecagg at finite values of the

cut a - o . Hence,
parameter [ we have

4 16)
Py=0p ¥ Ly / @ (
(16) results in
v 2 (17)
=/ 4d
T

in fracture mechanici fzrnsgﬁ;
at bi-axial exte
ini minal fracture stress B e en
ot 2 oiat tgft:oa straightline cut. Thus, n;hii;ear elation
i plat;;e gradient strength criteria a
hetween

Substituting (5) into
Py= K¢

This equation is well-known
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In addition, in
considering the problem of biaxial extension of a plate with

an elliptic hole the testing of results obtained earlier has
been performed because equations (17) and (6) had to coincide,

Space Problem. To verify the hypothesis for 3-dimensional
problems, let us consider stress distribution around an axi-
Symmetric oblate spheroidal cavity in an ‘infinite body sub-
jected to uniaxial tension along the Symmetrical axis (Fig.3).

D 1is the cavity diameter
in the Critical region;

H 1is the cavity size in
W the symmetry axis;

r 1is the current radius
from the Symmetry axis;

vV = :

r 022
W = D’ ;
z2_ 2 3

D°-H

P F

F19.3. The problem of uniaxial N = ¢ [ 8FW® - 2(1+v)F2-
tension of the body with
a spheroidal cavity.

]

why arctg(_%—] - W2

-6FW4 + 4w6 = 4w4 J

The solution of this problem is known (Neuber, 1958) and
presented in the elliptic coordinates. According to this
solution, distrbution of the first main stress 0} in the
dangerous section i.e., in the Critical region at the tip of
the hole, is determined by the expression

&= p(l + A2 4B L op s 2(1—v)C)[arctg[ : ] - el J],(lB)
Sh™ (u) Sh(u) Sh(u)
where use is made of the following notation:
A=V 4 ( (6-8V)F - 6FW? + 4wt - 8 (1-v)w? ] ;
N
B=_Y w4[2vF + 2wt - (1+2v)w2J; c=Y w4[6F - 12w2];
N N
e 12
u = Zn[ 2W —— + [ 2W 5 ] -1 J : V is the Poisson

coefficient.

The maximum stresses in the dangerous section are attained on
the spheroidal cavity surface, where r = D/2 It can be pro-
ved that in these points Sh(u) = v Hence,
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1 1 19)
A+4B » arct [___] _ 1 ] (
a =1+ V3 + (12B + 2(1 v)C)[ g Y .
Further, by definition of (1), we find that
2. 2
|24B+4(1—v)c - 6 (A+4B)W°/V |

—= (20)
3 1 3
4B = (125+2(1—v)0)[v2—v arctg(v)] + V> D

9, <

Let us consider the 1limiting transition from i 552f§02222
;avity to a plane circular crack when H[D.* o . Aé gits case
& - 0 ;3 W 1. The combinations of coefficients , ,

i i e for only the
in (19) and (20) are written with allowanc

values of greater order, i.e.
2 2
A+4B=%V;

) ' fon
Substition of (21) into (19) gives the follow1ng expressio
for the concentration factor a at V -

4 (22)
a:,,T:/V

2
12B + 2(1-V)C = - 2 (21)

Analogously, substitution of (21) into (20) and allowance for

only the terms of the smallness o;der Vj’esg E;e df:og;ggtgg
give the expression for the relative gradi .1 °
the concentrator having the form of a plane circular crack,
i.e. for H/D-> 0, V-0, W->1,
=i (23)
1 T 7o

Further, wusing the gradient approach, fwe’iée diiﬁ;i;:eunggi
nominal fracture stress P, = 0, / a or p

consideration. With taking into account (22) we obtain

= (24)
Py =3V O,

The use of the combined criterion and expression (23) gives

p, = VO [ 1-p+ /B + ~$§ L, /D ]

Since V - 0 , we have
2

— 25
Py = OB ? L1 / 2 ( )

Taking into account (5) yields,
= K Y 3 D 26
Py Ic 3 / ( )

i i i - Sack, 1946; Sneddon,
equation which is well knownl( °k,
?gzgfliihir;iture mechanics for determination of thfa;ogiggi
fracture stresses in the presence of a plane circu
with a diameter D
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CONCLUSION

Thus, it has been confirmed that the application of the gra-
dient strength criteria given as equations (4), (11) and (12)
to a particular case of stress concentrators in the form of
cracks results in equations of linear elastic fracture mecha-
nics. This peculiarity of gradient criteria is significant and
can be very effectively utilized for a variety of strength
calculations.
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