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ABSTRACT

The fracture of heterogeneous materials under the different
modes of loading (i.e., steady-state, linear and cyclic modes)
is studied within the simple deterministic approach. The
material is simulated by a 2-D inhomogeneous square lattice
Characteristics of the fracturing process with variation of
inhomogeneity parameter d@ and of deformation conditions are
investigated. The material durability and fracturing degree as
the functions of the parameters of simulation are discussed
The fractal dimensionality of the system 1S shown to be
practically independent of the changes in any of conditions
and equal to Df:={, 1010, 04, The fracture percolation clusters
being formed are of highly anisotropic form and the parameter
of their anisotropy (i.e., the value of cluster width to length
ratio)increases with dG and lies within dz0-0, 18($0. 10).
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INTRODUCTION

The growth of the disordered dendrite structures with fractai
properties can be observed in the processes of different
nature such as the flowing of fluids through porous medium,
the aggregation , the formation of polymer gels, the
dielectric breakdown, the material failure under the outer
stress, etc. Different characteristics of structures with
fractal geometry are widely discussed in literature (see
Handelbrot, 1982; Meakin, 1988a, 1989a, for example). The
nonequilibrium processes of heterogeneous materials’ fracture
at the different modes of variation of the outer stress are of
particular interest (Regel et al., 1972; Poirier, 1985).

In recent years, some different computer models were developed
for the investigation of the material failure (Dobrodumov &
El’Jashevich, 1973; Herrmann et al., 1989). All these models
wvere based on approximation that the cracking 1s a nonlocal
process controlled by a Navier equation, The simple stochastic
models of material failure and peculiarities of cracking
processes with different rules of growth were discussed by
Meakin (1988b, 1989Db). Also, the computer model of the surface
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Fig. 1. Idealized model of a heterogeneous material. The lattice
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Different initial configurations can be choosen by
introducing the different initializing numbers Ng of a
randomizer. The main results of this work were obtained for
large enough lattices of 650x50 and the same Ng. It is
shown in (Lebovka & ManK, 1992), that for lattices of such a
size the dimensional effects are practically absent. The
Kinetics of the process of a deformational failure was carried
out Dby an iterative solving of the equations, defining the
equilibrium of forces in each node. To improve the convergence
of the {iterative procedure, the relaxation method with the
empirical choice of proper coefficient was  used(Anderson et
al., 1984). The time of dilatone formation in ZurkKov’s(1983)
model can serve as a physical analogue of the time step we
used in our model.

The outer deformation was changing with time according to
different laws:

K = X,
X Ko+ aKxsin(2w(t-1)/tp)

where Ky-1is the mean deformation factor value, AX is an
amplltuge of X variations and tp is a period. The choice of K,
and AKX values, defining the &ean deformation factor and

of the amplitude of K variations , was done with the help of
fracturing diagram for a given system( see fig.2).

(const) (2-1)
(cyclic) (2-2)

To initialize the failure process, the choice of Ko>Kl is
necessary, and to observe the formation of the percolation
clusters the high enough amplitude of deformation factor
variations AK>Kp-Ko must be used.

RESULTS AND DISCUSSION

The Kinetics of Failure and Durability at Different Modes of
Loading, The number of broken elements versus time
ependencies HNb(t) under the cyclic mode of deformation
variation are presented in fig. 3. Here, the periodical changes
reflecting the sinusoidal character of deformation variations
are obvious in all the cases, besides, the number of broken
elements increases mainly during the first periods of

failure.

The important characteristic of the failure process is the
time defining the system durability. In the case of
steady state or linear variations of deformation, the
durability analysis, based on the extended exponential
distribution law, can be used (Lebovka et al., 1990, 1991). In
order to characterize the system durability in the case of
cyclic mode of deformation variations, we introduce the time
tq, which is necessary for a system to achieve a state
when 907 of the total number of elements of the system become
broken after the process ends (Nb(t:=tg):=.9x%Ny,)The tgq versus tp
curves at different values of amplltuSe AK are presented

in fig. 4.

At small values of amplitude, the td versus tp dependencies
have a complex character: first the sudden rise of tg (at
tp<100) 1is observed, then it decreases (at 100<t <250?

agd grows moderately( at tp>250). At high enough values of
amplitude, the moderate in€rease of tq 1s observed. It was
found ( Lebovka et. al., 1991) that in the case of unsteady
changes of outer deformation the passive and active (the
duration time of At =10- 20 steps) phases of fracture may

be distinguished and the durability of the inhomogeneous
system 1s <controlled by the rate of a deformation increase
TaKing . this into account 1in the case when ta<tp/4
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Note that the value of a corresponds to the failure degree
in the "high frequency" region (tp=1), and thus, we can
conclude that at given conditions Ehe failure degree increases
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Fig. 5. The plot of Poo versus dG with K:Kpn at the steady
mode of external deformation . The different points
correspond to different initial configurations. The
line represents the corresponding least-mean-square
fit. The bars denote standard deviations.

Fig. 6. The plot of P o Versus t, for cyclic mode of external
deformation, %he insert geplcts the plot of a and b
bParameters in Eq. 5 versus AK.

We can understand such behavior 1f
we take into account, that at large amplitudes and at low
frequencies the great number of individually broKen elements
appear in the initial moments of time and these elements

define mostly the final cracking pattern at large time
intervals. In the "low frequency" region (tp>>1) the failure
degree Practically doesn’t depend on the deformation
amplitude. In this case, the values of tp and AK define only

the time of the active Phase appearance and have no any
of

with increasing of AK.

noticeable effect on the geometry and cracking patterns
growing clusters.

Fractal Properties of Percolation Clusters. For multiple
labeling o roken elements clusters the modified algorithm
for the bond percolation problem was used (Hoshen & Kopelman,
1976). The Hausdorff-Besicovitch fractal dimensionality D

was estimated with the help of "box with sand" method (Nl{tman
et, al., 1988). In this method, we calculate the number of

cluster elements Ne in a square of rxr dimension and this

number is averaged over all the elements of Cluster. For the
fractal cluster the function Ne(r) is given by

Ne a rDf (6)
and from double logarithmic In(Ng) vs. 1n(r) relation(Fig.7)

we can ‘estimate the value of Dgs  The calculations of

Df were made only for a maximal clugter of bound elements.

The data pPresented in this figure Prove the automodel
character of failure rercolation cluster configurations with
mean fractal dimensionality of Df:=1. 1410, 02 for this
series of data. Fig.8 shows the Df vs. inhomogeneity
parameter dG@ dependence. The values  of Df are rather
insensitive to the conditions of deformation variation
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Fig, 7. Plot of In(N.) vers
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clusters, with dG:90, X:=K;. The diffeﬁent pglngg
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Fig. 8. The fracta] dimensionalit
Y of the percol
Df as a function of dG, with K:Kp. ;h:tég?sclusters
denote standard deviations,

(Ko, 4K, t). We have obtained the foll
dlgfereng initial configur S ana ® 3Yscaged on
conditions value of Df=1.igioééi?n and different ionding
Yet, we must note that Aaccordin
g€ to TaKaysu s
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L - te Same tasK 1s Dg:=1, 65% 0.05. This value 1s very
(DoAS ] Df= 1.7 for the dlffuslon-l1m1ted-ag¢regatlon
o thlmOde » but differs slgnlflcantly from the value obtained
ateEs S Work. Such an 1nconslstency may be a result of
dlmeergnce in  approaches used for eévaluation of fractal
valuns onality. In the works of TaKayasu (1965,1986) the Df
percglayign gf&iggﬁeﬁi ﬁrom 1the dependence of the number of
oKen elements v
égﬁ;gig dthe vangk oo SeHcso érsus the size of lattice
9 €d with the limited slzes of system under investi
weren‘’t taken into account and therefore this method ogagion
évaluation can give the wrong results. t

For the Square lattice Meakin (1988) fo
und the smal) enou
ga}?ea7! for the fractal dlmensionallty of cracﬁ?
mgésﬁrino'oa - _In this work the Df value was estimateq by
Py € the number of linear elements needed to outline the
e€r perimeter (so calledq, the fractal dimenslonality of
desars Perimeter), In general, Df may depend on the
erowthes of lattice geometry, on the "mechanism of breakage
Shat and also on the character of load arplying(i. e
ether it igs shear strain, uniaxial extension, etc.). o

MeaKin et. al., (1989) nave noted that the value of Dg for

2D cracking pattern can vary from ¢
°n the given conditions. . pis Saavion)
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elements, and the degree of their geometry anisotropy is an
lmportant characteristic for such cluster.

Clusters Geometr Anisotropy. The cluster anisotropy
parameter was detfined as ratio of cluster root mean square
thickness in the transverse and longitudinal directions to the
tension applied 9=fy/fx. The value of cluster anisotropy
Parameter J appears to be more sensitive characteristic to
differences in the conditions of rapture than the value of
Df and it depends markedly on K, AK, t, and dG. Fig 9 shows ¢
as a function of dG@ for percolation clusters at different
initial configurations. For highly inhomogeneous materials
increasing of value 4§ with dg correlates with the increase

of cluster branching degree.
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Fig. 9. Parameter of anisotropy 8 for maximal cluster as a
function of dG, with K:Km. The different points
correspond to different initial configurations. The
bars denote standard deviations. '

Fig. 10. Parameter of anisotropy 8 for a percolative cluster
as a function of tp, with K=. 397 (Ko=K3) ana
dG=90,

The time dependencies d(t) for maximal cluster in the
cyclic mode of deformation variation are also remarkable. In
the initial moments of time (within the induction reriod) only
individual linear elements are being formed, and in this case
3=0. The formation of leading clustei is characterized by

the appearance of relatively compact weakly anisotropic
fallure structures with high value of & During the
eévolution of fracture & decreases with time, The 4 versus

tp dependence for percolation cluster is somewhat unexpected
(Fig. 10). At low enough value of AK:=0. 15 the curves of

d(tp) pass through the maximum corresponding to the
forﬁation of weakKly anisotropic and highly branched

rercolation clusters.
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