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ABSTRACT

The object of the present paper is to consider the mathematical
modeling of postcritical deformation processes. They
correspond to the descending branch of stress-strain diagram
and are connected with the processes of structural fracture and
crack generation. The stability criteria of these processes
were obtained and boundary conditions with finite stiffness of
loading system were formulated. Postcritical deformation
conditions for composites were investigated. The equilibrium of
damage accumulation being satisfied for damage zones, there is
a possibility to involve strength reserves and increase the
vitality of structures. This is illustrated by calculation
results.
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STRUCTURAL FRACTURE AND DESCENDING
BRANCH OF THE DIAGRAM

The top point on the stress-strain diagram corresponds to the

critical state. At the same time a failure of material results
from the lack of damage accumulation stability on postcritical
deformation stage. In this case the failure means the final
brief nonequilibrium stage of the process connected with
avalanche defect growth. The resistance to the failure on the
postcritical deformation stage depends on the loading system
stiffness. Hence the deformation diagram doesn’t break at the
top point but the descending branch takes place. Every point on
the descending branch may correspond to the moment of
failure which depends on the loading conditions. The
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realization of the postcritical deformation stage leads to the
utll;zation of the carrying capacity reserves. This can be
applied at optimal designing of special materials and
structures. It is the structural fracture that is the cause of
existence of the descending branch on the deformation diagram
of heterogeneous media. Fig. 1, as an example,gives the results
of the theoretical investigation of mechanical behavior of
elastic-plastic laminar composites. The components strength
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Fig.l Calculated deformation diagrams of
the laminar composite and volume ratio of
fractured aluminum (1) and magnesium (2)
layers curves

properties are assumed to follow Weibull three-parameter
distribution function. The smooth diagram in Fig. 1 corresponds
to this case. The stepped diagram corresponds to the
deformation of one realization of random set with limited
number of layers. The fracture of layers by shear or tear modes
resulting from stress redistribution at complex stress state of
composite led to the descending branch and to the "tooth" on
the deformation diagram as well. Some macrostress—-macrostrain
relations have already been interrupted on the rising branch of
the diagram.

FORMULATION OF BOUNDARY CONDITIONS
IN FRACTURE MECHANICS PROBLEM
To evaluate the stability of structural fracture and

crack generation processes the examination of the energy
balance is necessary. A new formulation of boundary conditions
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proposed for the boundary-value problems of fracture mechanics
takes into account the finite stiffness of the loading system.
This formulation allows to describe energy redistribution
between deformable body and loading mechanism.The external
forces applied to the part Iy of the body boundary are assumed
as:

(D = Syt = S; (1) +(2S;/9udus(t), (1)

where So(t) is a vector of external forces assumed by loading
program, W is a vector of the boundary point displacement,

Rﬁ(u)='asi/aud is stiffness of loading mechanism, t is the
time. Displacement at [; - boundary are given as:
o
ui(t),m=ui(t)+ (aui/asj)sju), (2)

were ﬁ(S):-@Hﬂ@SJ is the compliance of the loading mechanism
and U® " is prescribed according to the loading program. It is
quite obvious, that RiKij= ij , eq.(l) and eq.(2) are
mutually inverse. At Ry=0" or- Q4j=0 the boundary conditions
correspond to "soft" or "rigid" loading respectively, and coin-
cide in form with the boundary conditions, commonly used in
mechanics of deformable solids.

STABILITY OF POSTCRITICAL DEFORMATION

To estimate the stability of the equilibrium damage growth pro-
cess on the postcritical stage, the relation between the spent
energy (sum of increments of the elastic deformation energy
and the work of fracture 5Ap) and the supplied one (the work
done by external forces Ap ) should be considered at virtual
infinite small deformation increment. The work of fracture and
the increase of the potential energy of elastic deformation
compose the specific work of deformation for elementary
material volume. Such work on any deformation interval is
defined as the area under the equilibrium diagram curve,
received by experiment on "stiff" testing machine. The work of
external forces is connected with displacement of the points of
a deforming body caused by the decrease of its stiffness in the
process of fracture :

In this case the inequality

§A, < dW + BA, (4)
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18 a postcritical deformation stability condition. Evidently,
the spontaneous damage growth without the increase of the
external load isg impossible, since there isn’'t enough supplying
and releasing energy for the work of fracture. Non-fulfillment
of the lnequality corresponds to avalanche defect growth i.e.
dynamic failure. At any material point of the body subjected to
external loading the local postcritical deformation stability
condition is

(Vijmn - Dijmn)ﬁmn sij * O (5)

wherg D - tangent;al modulus tensor on postcritical stage, V -
load}ng S8ystem stiffness tensor. Components of tensor V can be
obtained by expression

Vijmn = (1/2)(965/ 0w, ) (dX 8, + dXdy ) (6)

reflects stiffness characteristics of all set of the material
Points and the loading system elements.

FRACTURE MECHANISMS AND CRITICAL STATE CRITERIA

The trad1;ional strength criteria do not include the loading
system stiffness ang correspond to “"zero" stiffness. Similar
Criteria can be used for the evaluation of the critical
stress—dgformed state. The critical state is characterized by
the combination of two conditions: the postcritical deformation
condition and the stability fracture condition for the defor-
mation process. Concerning the mechanical pProperties of the ma-
terial at the damage zones any assumptions connected with eva-
luation of the invariants of stress/strain tensor can be accep-
ted. For example, with an isotropic material it can be accepted

KBy 8y + G(8y38y0 + 8,8y, - (2/3)838,), B,<0
Cijkl = KSIJ 5kl R ?6 >O, I6 <0 (7)
0, <P° 20, Ig>o0,

where CPG T any strength criterion (for damage zone ch)O Yo
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Application of this model for calculation of stress—-deformed
state of unidirectional fiber-reinforced composites subjected
to complex transversal loading demonstrated possibility of the
stable growth of damage zones in the structure of a composite.

of the unidirectional glass-reinforced plastic of regular model.
On the Fig.2 the stress intensity S; (ci=gyﬁsﬁstjy 2) is:
in the non-shading zone ©6; <35 MPa, in the single-shading zone
35MPa < 64 < 56MPa, in crossing-shading zone 56MPa < 331, damage
zone with Iy < 0 marked by points.

Gy=62,= SHETRCN
= - 140 MMa | = - {50MMa

Fig.2 Damage zones in structure of the
unidirectional glass-reinforced plastic
under transversal compressive loading

POSTCRITICAL DEFORMATION OF THE STRUCTURAL
ELEMENTS OF COMPOSITES AND STRUCTURES

The stability conditions of postcritical deformation are

analyzed for the elements of bar systems and components of

granulated, laminated and fiber-reinforced composites. The

obtained conditions set limitations in the relations between

stiffness parameters and parameters of the descending branch of
the diagram. For instance, the equilibrium fracture conditions

for spherical inclusion in infinite matrix are:

G>(3/4)K}, , G(9K+86)>GS 6(K+26) ’ (8)

where G and K - shear modulus and bulk modulus of the matrix,
G; and KP shear and bulk modula of the spherical inclusion
at the Dpostcritical deformation stage. For two component
laminated composite subjected to active deformation( &7, #0 )
the postcritical deformation stability condition of the "first"
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component layers deformation is:

G(2)>G(,:)(1‘P(”)/Pm- (9)

For the laminar packet loaded to increase the macrostress
&, the similar condition will be:

N G'F:”PU)/U“P(”) (10)

The stability and instability zones are illustrated on Fig.3.
On the account of more full utilization of strength reserves
the zone 2 is preferable. The sudden dynamic layers failure
corresponds to zone 4.

G(ﬁ)/ G_;:)
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Fig.3 Zones of stability of layers
postcritical deformation

At uniaxial loading the conditions of equilibrium fracture of
the fiber-reinforced composites are:

R > Ecp-E, (4-p)+ 4616, pU-pX-0f (6L + 6 pld-27,,) -

8] -1
- 6, (I-p)1-20E N1 ()
where 0. o Poissog’s ratio, f and m - indexes refer to fiber
and matrix respectively , p - fiber volume ratio, R - loading

system stiffness characteristic. In case of extension test R
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Fig.4 Critical stress state of the thick-wall
tube at postcritical deformation

is connected with the stiffness Rn1°f the test machine by the

formula:
R=R,,1/F,

where 1 and I are the length and the cross—-section area of
specimen working zone. The satisfaction of the condition of
postcritical deformation is a means of utilization of
additional carrying capacity reserves and also a method to
increase the vitality of a structure, i.e. the capability to
resist to external loading on the stage of crack generation and
growth. It is illustrated on Fig.4 by analytical calculation
results of carrying capacity of the thick-wall tube subjected
to internal pressure taking into account the disstrengthening
of material.Reserve of the «carrying capacity calculated for
this case is 50%.
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