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ABSTRACT

The problem of the macroscopic crack propagation 1is examined
for a case of a randomly heterogeneous brittle media. The main
structural mechanisms are accounted by means of continuum
damage mechanics and stochastic values of KI' The 2D problem of

a crack propagation initiated by a V-shaped notch specimen was
numerically simulated. The proposed approach allowed to examine
the spatial and temporal propagation of the crack accompanied
by the stress redistribution. It 18 shown that the fractal
dimension of a crack front can be used as an invariant of
brittle fracture process for stochastic materials.
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INTRODUCTION

Analysis of crack propagation 1in various materials under
different conditicns 1is one of the central problems in fracture
mechanics (Tada et al., 1973; Knott, 1973). Achievements in
material sciences and production of composites caused the
transition from linear fracture mechanics to non-linear one.

The standardized methods for experimental evaluation of
fracture critical parameters together with specific numerical
procedures (including special types of finite elements, etc.)

formed a basement for a precise 1l1life prediction for various
constructions. The crack propagation process 1s sufficiently
complicated in the cases of so called ""'randomly heterogeneous’
materials (Beale and Srolovitz, 1988; Hassold and Srolovitz,
1988). Macrocrack development in such media (brittle rocks and
stochastic composites being examples) interacts with a
non-uniform evolution of microdefects at different scale
levels. A stochastic distribution of mechanical properties and
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e v
mif?f;f: o:;s:;ations causes a gtress localization and a
Cracx—damage e of fracture nucleus. Some ideas for
o (fggg) crack-microcrack interactions were proposed by
e e and Kachanov and Laures (1989). The presen§
ot Stocnast:: the elaboration of an adequate description
hetencear fracture process development in randoml
-3 ©us media with non-uniform damage accumulation. Y

MODELS OF STOCHASTIC BRITTLE MATERIALS

Ana
evoig:ijnofnt:: processes of damage accumulation and fracture
et heteroochastic media is usually complicated by many
nonmuntrons r‘ed:gL;e:eity and anisotropy of mechanical properties,
o i ehog stribution of stress under a crack propagation,
Crack-damane 1n: factors have a different effect on the
E bt f):‘zcturee:“actj.on. which determines the sSpecificity of a
PECCE SR G ieveJ.Opment. A correct description of these
bt possible on the basis of adequate continuum and
nuum models of a randomly heterogeneous solid with

sStructural defects
» also taking into the ac
nature of mechanical prOpertieé. SR S AR L

It is recognized that the stochastic crack
;epresented a8 a random walk mechanism,
arkov-chain formalism. But such an

growth could be
described with the

o approach presupposes

1gn;r:ngre‘pendence ©of elementary fracture acts, so pzne coﬁ?ﬁ

el € spatial parameters. Recently new methods of the
analysis were proposed, mainly based on the

erco »
:oaell::tﬁn theory. The specimen is approximated by the lattice
Erra o ofac:andom distribution of strength parameters. So the
€ structural element is ' "
ineay spatially frozen' and
failu::cezozhe behaviour of neighboring links. The macroscopic
responds to the critical
o a (infinite) clust
: p:::;Tntind could be characterized by the scalar param;ter °r
atlon threshold. The continuu .
. m fracture model
mome o 8 became
proposgg :s;e complicated: a Swiss- and blue-cheese models were
4 media with cracks b
iy y Sornette (1988). The
PesDeciIth 2 percolation approach was mainly stimulated by a
Darametere(y simple procedure for obtaining a threshold
s & concentration one, as a
o . rule) directly from a
- diff:;eby analogy with electrical conductivity. But recently
conductiv::e between percolation thresholds for electrical
g Tt v ?nd brittle fracture was proved by Sornette
. could be naturally explained by more complicated

hierarchical g
ystem of
carriers. defects {if compared with electricity

::es: methods, which were utilized for the
frzzt:Ie :szii;g %;::é T:det an impetus to the use of the

elbro 1977, 1982). This rocess wa
z;o:::ezeii_zzziiactors. The first was the deep u:derstandin:
Second o o oo ir character of the fracture evolution; thé
o fragtaz mity of fractal and percolation approaches:
et ta and percolational clusters coincide. But in
=] geometrical realizations' similarity, the percolation

investigations of

76

[T

levelc for media
3tudy more
isties? the
le fracture

theory doesn't deal with a hierarchy of
fegcription. Besides. the fractal theory allcws to
prrecisely (and to obtain gualitative character
dpatial and/or temporal evoluticon of guasi-britt
process.

THEORY OF FRACTALS AND FRACTURE MODELS

Aa it seems, the possibility for the use of fractals in brittle
fracture analysis was proposed by G.I.Barenblatt (1983). The
interest to fractals was to a certain e:tent stimulated by
axperimental data which proved the fractal character cf LOrous
media and fracture surfaces. The main part of theoretical
fractal approaches, which 1nvestigate fracture 1initiation.
introduce additional mechanisms (analogous to the structurasl
raconstructions) or a hierarchy of different sScales. Some
approaches exploit the external geometrical similarity of crack
morphology and fractal objects (Lung, 1986; Lung and Zhang,
1989; Heping, 1989) but usually it doesn't allow the whole
fracture process to be described. Scme approaches deal with

models for solids of a spring or rod type (Solla, 1986: Hermann
at al.. 1989; Hinrichsen et al.. 1989; Louls et al., 1986;
1989). Elastic constitutive equation is

Arcangelis,
aupplemented either by a local fracture
fracture initiation (cut of the spring). Other properties of
real structure could be introduced by different procedures. For
axample, two kinds of elements are exploited (Solla. 1986,
rapresenting various fractions of a compcsite.

condition or by a

we could point out that traditional fractal approaches of
brittle fracture are based on the relatively simple models and
do exploit mainly the linear elasticity az a constitutive
@guation. They, as a rule, don't take intc consideration the
avolution of a microstructure (damage accumulation and the
l1ike) which i1s one of the main reasons of the fracture.

Thus,

FRACTAL ANALYSIS OF DAMAGE - CRACK INTERACTICN

Approaches being develcped within
of the

cracks

Model of Damage Accumulation.
the framework cf linear fracture mechanics involve situdy

ronditionz leading to instability of a sclid containing

Chaboche

of particular geometry. Theze methods as was shown.by
11988) and Kachanov and Laures (1989) shoul account the
time-evolution of the microdefectz for correct edic
the fracture development in e specimen or t
Lid

‘esides, the conventional approaches., as a rule.
averaged structural and mechanical featuree. A
approximation tc modeling a heterogeneous rsniom
rontinuum fracture mechanics whoze fundament

in the works by L.Kachanov and Yu.Rabotncw,
reached a broad audience {Chaboche 127
fonseka, 1981). The present work uses a continuuw
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descript
Silber:ci;;dtOfl @ medium with microdefects (Naimark and : 2
' 991; Betekhtin et al., 1989). with a constant force S on its end far from the cross-
The second- g section under study. The direction of the force is
order tensor Piy is used as a damage parameter. It 4 perpendicular to the region ABCD. We shall divide this
characterizes the volume concentrati cross-section into the elements which dimensions correspond to
orientation of the penny—sg; é& éic;oon and  the profercntial the requirements of the elementary volume (all macroscopic
equations which account thz intera::;zks. The constitutive parameters could be considered to be constant within such an
Stress-strain state and damage accumul tin OF Shangs of he alement). All the non-uniformity of the mechanical properties
the basis of the statistical-thermod a*2on were obtained on and a stochastic character of the damage accumulation will be
medium with microcracks. In the en:rZ?am;c description of a taken 1into account by setting the distribution of these
can be written as (Silberschmidt? 1990, 19;;? these equations parameters along the elementary volumes in a random way.
o _ . . For the case under study the system of the constitutive
ik ~ fl(aik, Pyk: Py gik' Eik' S,...). aquations (1) can be reduced to the lcad redistribution ldw for
structural elements due to the crack propagation and to the
_ . (1) kinetic quasi-linear equation of damage accumulation. The
Pik = fz(pik' oik' aik' 51k' gik' Sinwi ). latter could be written for the p = Sp Pim in the form
where o, , ¢
ik 1k 2re macroscopic stress and strain tensors pij A oij « B pij (2)
respe . - .
dif? ctively, S - structural parameter, "o me
erentiation with respect to time ans
v where a pair (i,j) corresponds to the element of the 1-th row
and j-th column, rows are perpendicular to the crack front, o =
The Stoc! £ racture of & V-notohed S ccimen. Th azz is a parameter of a macroscopic stress tensor. z being the .
the brittle fracture interactin wi;ﬁ——————a € analysis of load direction; A and B are parameters of material (in a common
evolution should include a descri g Stochastic  damage case the random values, too). In order to fulfill automatically
of strength and seription of the spatial scatter the equilibrium law let's consider g
{ Formaticn of the possibility of a strong fragmentation ) e f
Howkver cr:atilurality of 1intersecting fracture surfaces). -1 14 ‘
in this'ca ng computational procedures can be complicated G = G'Y = const (3) g
under stuase due to the increasing connectedness of the region 4=1 ¥
applied toy :: & result of formation of new free surfaces When : i
e conve . i
finite elements - thisn::::iiesS::;:rmii::i:tiz:tion schemes ~ where Gij is the stiffness of the (i,j)-element, N - the number
conditi n o the boundar
be overz::epaztiCUlarly on each time step. This shortcoming cai of columns of the elements. Let's note that we distribute atd
¥ using the fractal th v 11 el t i th i f crack. The del
st eory to describe th over a elements, even in e region ¢ e . mode
ochastic nature of fracture. € i3 i
distribution of G can be defined by the formula i
To stu b
notche:y t;he brittle fracture of specimens without sharp i3 2 '
discretizatfo fra:tal tree was used as an analog of the G = G[l + =in ("k/M)] (. = 1,8 3 (s
N scheme of the region of =
in a traditional o g pace under study. But
ase o -
interaction becomes theflzzzinv :hgge joteh the crack-demage where k 1s a random integer, 1<k<M; M = N2 is a total number of
in the evolution of efgénble o: da: or in :rack propagation and elements for a square lattice of N rows by N c?}umna: the ratio
Silberschmidt anda Silbersehmtat ;g;;ts (?1lb§rschmidt_ 390: of maximum to minimum stiffness equals 2. So G is a random W
state equatione 1in form (1) one' h S b). So, besides the magnitude set in a numerical simulation by the random number 2
in terms of the stress intensit ngU1d fccou?t the exact crack generator. The load redistribution law must reflect the stress
The stress redistribution in thi B?E°P° (Silberschmidt, 1991). field disturbance caused by a crack propagation. Because of the
the basis of Known kit -wl fs case could kbe described on apatial non-uniformity of this process, linked with the random
(Cherepanov, 1979). ’ or example by formulas from character of mechanical properties, one should take into &
account the difference of the crack length along 1i§2front. So,. .
L:; :s ::udy the application of the fructsl sppisach Fop exploiting the well known relation ozz = Kl/(zny) where v
ie : gatlng crack characterization by an example of the {8 a coordinate perpendicular to a crack front: one may obtain
(agdangular region ABCD, which contains the symmetry plane the stress redistribution relation by integrating this eguation
ra io:ntapeX) Of the V-shape notch. We shall consider thise along the y axis in the rows : %
< © be the cross-section of the rectangular beam loaded i9 14 g
o4 = Kijoin (5) :
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where the initial sStress value

Stiffness of elements) is (depending on the random
1 - 1:3 =
(>4 =
in = S 67/ 61 (6)

Here G - S S gty

i=1 3=
:;mensions of the structural element
Spectively. The reloading coefficients

1s the total st H
iffness; lx and 1y are the
along x and y axes,
K reflect
inte . -
cons::ﬁzizg fracture mechanisms: the crack progAgation d
s fron:ad and the local failure of the elements u:nertha
e ei;he:heb structural element fracture condition 1:
v the normal (natural) kinetic criterion

(asymp totic > t m
P . is the fracture time) or b the
£ o

fule
conc:i::e:t of the postulated local fracture criterion
stiftneea ion). we'1ll assume that for the failea
. (B at::nd:n::ezero. The second mechanism 1ig accounted by
: ase caused b th :
s v €@ stress red
erates the damage accumulation. The coefficientzs;rib:tii:
iy =ev

be obtainedq from the formula

(force,
element its

A o1 Ay
K =
13 " Ky G0 (7)

A
where
Rij are linked with the stress intensity factor of the

1-th row of the crack front:

A

i / / /
13 = KI nly ( 3—11 - j¢1;11) ¢ ' (8)

1
i being the number of columnes in the i-th row Occupied by th
e

cerack. The second multiplier in eq.(7)

©of the total decrease

accounts the

stiffness for the 1i-th TOW under the crack
propagation and failure of sStructural elements: 61 = CGiJ
R, ) - "
137 The value of KI could be approximated by the knéwn
relations, for example, by (Cherepanov, 1979) :
~ 111 - 51, ot
Ki = 5 Gi b i
I f (9)

A
G(1 -
( 11/1-1)

is a specimen dimen
sion alon
T g V.
a:: ::ge?ical simulation was fulfilled for the case of N = 50
Faeowa o i.e. the 8quare lattice of 2500 or 10000 elements
P vely). and the V-shaped notch, Occupying 4 per cent o;

a——
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apaecimen's width. The process of fracture propagation 1is
aufficiently non-uniform, the crack-front movement being of the

datep-like character.

In order to prove that the crack front is a fractal object one
should calculate its fractal dimension. It could be obtained,

- R in double

for example, as the slope of the curve N

logarithmic coordinates, R being the distance from the Lcr and

.

N - the number of failed elements in crack front within R.
is the column (farthest from the notch apex) which

Hare Lcr
csontain only failed elements. It is a traditional procedure for
a fractal, developing from the straight line (Mandelbrot, 1977,
1982). It's obvious that the fractal dimension insufficiently
changes with the crack propagation though the crack front's
shape varies largely. Calculations, carried out for various
atatistical realizations (various random distributions of
material's properties over the region under study), give the
value of the fractal (Hausdorff- Besikovitch) dimension for a
propagating crack DHB = 0.68 £ 0.03 .

does not contradict the data

1989) and the
the real

The resulting magnitude of DHB

of the numerical simulation (Hermann et al.,
experimental definition of the fractal dimension for
porous solids (brown ccal, sandstone, others). With the crack

approaching the specimen's opposite side the fractal dimension

increases with an asymptote, DHB-* 1 : the last rows 1n this

case contains mainly failed elements, so the 'mass' of fractal

increases proportionally to its radius.
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