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SUMMARY

Several versions of criteria based on failure tensor polynomials (FTP), whereas
define identical values for the diagonal terms of the failure fourth-rank tensor, H, as
well as for the terms of the strength differential effect second-rank tensor, h, they
present differences between the off- diagonal terms of H.

The three most important versions constitute the Tsai-Wu criterion with the
additional assumption thar [1,3] :

H;=0 fori#j, (1)
the Tsai-Hahn criterion, with [2] :
H;=-1/2(H, H»2 2)

and the elliptic paraboloid failure surface criterion (EPFS), with [5-8]:
H;=172 (Hy - H;; - Hj,.) 3)

This paper points out their main differences, by comparing their results with existing
triaxial tests and it proves that, while (03,01 )- and (03,0,)-intersections of the failure
surface yield doubtful resulrts, plane tests in the (0,,0,)-isotropic plane is a convenient
test for comparing criteria, because the 45 deg off-axis values of failure stresses
differ substantially for each particular criterion. Additionally, a biaxial hydrostatic
tensile or compressive loading of such anisotropic lamella presents the advantage to
be independent, and therefore insensitive, to any off-axis orientation of the
specimens, relatively to the loading axes. Therefore, these biaxial tests may
complement triaxial ones for the explicit definition of a valid version of criterion.
Biaxial tests with different orthotropic materials indicate the superiority of the
(EPFS)-criterion and the weaknesses of the other rwo versions of the
(FTP)-criterion.
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1. TENSOR POLYNOMIALS FOR FAILURE OF ORTHOTROPIC
MATERIALS

The most widely used criteria for isotropic and anisotropic bodies assume complete
tensor polynomial [unctions in a quadratic form, whose linear terms take into
account the strength differential effect (SDE) exhibited by all materials.

The anisotropic failure theory is based on the hypothesis, which is largely supported
experimentally (4], that isotropic materials can withstand infinitely large amounts of
hydrostatic compression (or tension) without failing. Thus, a safe loading
Path exists in the 6D-Euclidean space of symmetric stress tensors which, for
isotropic solids, coincides with the direction of the 209 rank spherical tensor,
ul(ue R7). This hypothesis, represented in the 3D principal stress space, is evidenced
by a paraboloid of revolution with the hydrostatic axis 0,=0,=0,, as a Ssymmetry axis,
whose open end is oriented towards the direction of hydrostatic compression, or
tension [5].

A generalization of this (ailure surface for orthotropic solids is represented by
an elliptic paraboloid with a symmetry axis, parallel to the hydrostatic axis, and
displaced from the origin of the coordinate system by a distance depending on the
degree of strength anisotropy of the material. The failure condition expressed in
terms of principal stress components, g;, was shown to have the general expression
of the quadric surface equation in compacted form, that is [71:
Hijoioj + hioi -1=0 g, j=1, ......,)3) @)
d .. . . . .

where the 2" rank tensor H;; and the vector h; were appropriately defined in terms
of the basic strength properties of the material [5-9].

The necessary and sufficient condition for the failure surface (4) to be convex and
open-ended is that the tensor H must be positive semi-infinite. This condition is
expressed by :

6 -H 620 WV a>0) ©))

Then, the normal components of the failure tensors are expressed by :
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H, = = (6)

u 0Ti a
i<3)
=11 _
h = o "~ Oy ©4 - oHy Q)
whereas for shear components are given by :
- 1 ®)
" T G
(i>3)
=L 1 _
h = o; - o, ~ (0 - opH, 9)

In the above relations the repeated index convention does not apply and the o; and
0.,-stresses express the tension (T) and compression (c) failure stress in the
{-direction. Furthermore, the 0", 0" -stresses express the shear strengths positive
or negative in the i-plane (i > 3) and the usual contracted notation of Cartesian
indices is used. When the coordinate system defining the failure stresses coincides
with the material symmetry directions there is no shear-strength differential effect,

oo gy -
that is : 0"=0

Up to this point, no special phenomenological hypothesis was used for the
determination of the failure tensor components. The calculation of these
components was based upon requirements, common for all anisotropic failure
criteria, which are expressed by the general form of eq.(4). However, the
off-diagonal components of the failure tensor H (Hij , i#j) should be derived
according to the particular assumptions, which are different for the various criteria.

I'he open end of the failure hypersurface is mathematically assured by imposing the
4'™.rank failure tensor H to have a zero eigenvalue. Moreover, the hypothesis
that hydrostatic stress is a safe loading path is mathematically formulated by
associating the zero eigenvalue of tensor H to the 2™-rank spherical tensor, 1, which
is then the corresponding eigentensor of H. The above implies that the failure
hypersurface is a generalized elliptic paraboloid with a symmetry axis parallel to the

direction of the spherical tensor, 1.
These conditions yield the following expressions for the non-diagonal terms of H :
- Hy- H), G ) k<3 k) (10)

115



Relations (10) imply thart the interaction failure coefficients Hy,, H,; and H,, for the

o : _ ’ 31
elliptic paraboloig failure surface (EPFS) are interrelated with the diagonal
components, which are directly defined through relations (6) and (7) with the basic
strength data.

I"hxs. isa signiﬁcam advantage of the (EPFS)-criterion which is not met with the other
similar criteria. Indeed all these criteria are solely based in the experimental

when compared with 3D-experimental failure data [1 1].

expressed in the (01,02,03)-principa1 stress space, where the 05-principal direction
corresponds to the Strongest one, by [7]:

H 22 2
11(01+02) + H3303 # (HU-ZH”)OIOZ - H33(0103+0203) + h1(01+02) % h303=1 (12)
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I'he same expression, referred to the Cartesian coordinate system Oxyz, where the
Uz-axis, is parallel to the hydrostatic one and the (Oxy)-plane is the deviatoric plane,
with the Oy-axis lying on the 00,05-plane, is expressed by :

QH,, - %Hu)xz + %Hnyz + \/—%(h3-hl)y + %3(2h1+h3)z =1 (13)

The principal semi-axes a, and a, of the elliptic intersection of the (EPFS) by the

deviatoric plane are given by [7] :

( ( 2 ( | 2 1
. T ) “ﬁﬂﬁ%J}
j = ” (14)

NP?

1
(\4},2 \ | L(Eﬁ
( 11'H33)) *H L 3

k 33
N

The ratio of the major axis 2a, to the minor axis 2a, of the elliptic intersection

expresses the ellipticity of the paraboloid and it is given by :

1/2
{ 3 }

= T 15

)‘n (4H11"H33) )

Moreover, the angle 0, subtended by the principal axes of the elliptic intersection and

the Oxy-system is given by [7] :

0,=0 (16)

The equation expressing the intersection of the elliptic paraboloid failure surface, by

the principal plane (04, 0)) is expressed by :

73 2 -
H”ol + Hno3 + 2}{310301 + ho + h303 =1 a7
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Fig.1 Intersection of the EPFS for the transversely isotro

@, pic material by the

0,)-principal-stress plane for a C-strong transversely isotropic material

The center of this ellipse is defined by its coordinates (030, Oy0)- Figure 1 presents
this intersection in the (0, .0)-principal stress plane and the coordinates g,,,

e 0, and
the angle A, of inclination of the polar radius (OM) are given by [7] : ™
(@530, 1) = [ Ot yy) (zh, +h,)
MM Hy,(4H, -H,p @H, -H,,) (18)
H,,(2h,+h;) (19)

The system of Cartesian coordinates (Mg ,03), to which this ellipse is central and
symmetric, is defined by the angle 6,, expressed by :

1 H33

0 = — 33
20
(Hn'Hss) &

1

NJ:—-

an”
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On the other hand, the intersection of the (EPFS) by the transverse isotropic
principal plane (0,0,) is an ellipse whose center lies along the bisector of the angle
(0,00,) with coordinates:

h,
0, =0, = - —— (21)

Kk "X H33

and whose principal semi-axes are given by :
i N

a. =429, |

1K H‘33 [HH
(22)

V2
H, +h
0. =42 3371
* Hj;(4H, - Hyy

Relations (21) and (22) indicate clearly that the position and the shape of the
transverse isotropic intersection of the EPFS is influenced strongly by the anisotropy
coefficient H,, and this intersection is much different than, the respective
intersection of a totally isotropic material presenting the same strength differential

effect, as the SDE existing along the transverse isotropic plane (see Fig.2).
|

C-stroeng

quadrant for Io]
10 913 l»"/zlcc,—a“; T-strong
/S quadrant

i
A
R/
Qyn

T 7 2
9 NU!
(rt-Ay) (1t/3=-3y)
e
/ }\

C - strong
quadrant for
I ’c:'“r;l‘yz(c’tx =03

Fig.2 Intersection of the EPFS for the transversely isotropic material by the
(0,,0,) isotropic transverse principal plane for a C-strong transversely
isotropic material.
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3. THE FAILURE TENSOR POLYNOMIAL CRITERION IN ITS THREE
DIFFERENT VERSIONS

The expressions for the transversely isotropic material, which are much simpler than
those for the general orthotropic materiaj [12], whose 03-axis is the strong axis, are
derived from the general orthotropic relationships by introducing the simplifications -

Then, the failure tensor polynomial surface for the transversely isotropic materiaj
satisfying all the properties already described is expressed as follows in the
(0,,0,,04)-principal stress space, where the 05-principal direction corresponds to the

strongest one [12] :
2 2
H”(Oﬁﬂé) + H3303 + 2H120102 + 2H13(0103+0203) + h1(°1+°z) +h303 =1 (24)

This expression, referred to the Cartesian coordinate system Oxyz, is expressed by :

[ ]
2, 1 21/52
H,,-H )x"+ 3 (H11+2H33+H12'4H13)yz+i 3 (Hss'Hl1*’1’{13'le)'\/g‘(hx'ha)jy+

2
Z
+3 QH | +Hy42H 14l ) +%3(2h1+h3)- 1=0 5)

(a) Relations (24) and (25) for the (EPFS)-criterion, become :

2, 2 2
Hx 1(01“’2) + H33o3 + (H33'2H1 1)0102' H33(0103+0203) + h1(°x+°z) + h303=1 (26)
and :

Ll va % 2 '
(ZH”' 2H33)X +2H33y2 ‘\/; (hl~h3)y +/_i3(2hl+h3)Z= 1 (27)
(b) For the Tsai-Hahn criterion, where relarjons (1) and (23) hold, take the form :

2, 2 2 A
H“(01+02) + H3303 - Hn"x"z' (H“H33) (01"3*02"3)*“1("1*02)*’“303: 1 (28)
and :

2
3y 2. 2[1,n "IJ 2,1 {22 h
7 H x *'3(2 Hyj+Hy, Jy2 4 3 ZH”-H“-(H“H”) \/g(h]-hp y+

r W]
h
L Hyy o+ Hy - 2(H, H 1224 %(Zhl«ph})z:l 29)

+

[SSTE
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(¢) Finally, for the Tsai-Wu criterion, with Hij:O, (i #j), it is valid that :

2. .2 2 -
H“(olmz) + H33°3 + h1(°1+°z) + h3o3 =1 (30)
ind :
1 2 | 272 2
H”x2+?(H“+2H33)y [ 3 (Hu'Hsa)Z*\/;(hl'hs)JY*“

+%(2H“+H33)_zz+%(2hl+h3)z=1 G1)

For the principal diagonal (038,,)-plane, which presents the symmetric intersection of
each of the failure surfaces we have that 0,=0,=8,,/Y" 2 and 05 = 0,, the general
expression for the tensor failure polynomial surface for the transversely isotropic

body is given by :
(H, +H,)80 +Hy 022/ TH 8 o, /2 h,8,,+hy0,-1=0 (32)

Relation (32) for the three versions of criteria studied take the form :

For the (EPFS)-criterion :

1 2
7 H3yd,+Hy 03 J2H 8 o+ 1208 ,+h,0,-1=0 33)
for the Tsai-Hahn criterion :
1 2 2 b _
7 M0 +Hy303-J2(H) H s o+ {218 ,+h,0,-1=0 (34)
and the Tsai-Wu with H,=0 criterion :
2 2
H,,8], + H,,0? +/§h1612+h303-1=0 (35)

The above relationships were used for tracing the intersections on the principal
diagonal symmetry plane (0498,,) for a typical transversely isotropic material, which is
the oriented polycarbonate (OPC). The failure properties of this material were given
by Caddell and coworkers [13-15]. Its failure strengths along the strong 05-and the
weak 0,- and 0,-Stress- axes are given as :

O3 = 65.2 MPa
Ocy =42.7 MPa

Oty = O, = 35.2 MPa
Ocy =0 =45.2 MPa (36)
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Using the values for the oriented polycarbonate [13] given in relations (36) we define
the (040,,)-intersections of its failure surface, as defined by each of the three
versions of the tensor failure polynomial criterion expressed in Eqs. (33-35). Fig. 3
presents these intersections. While the failure loci for the (EPFS)- and the
(TH)-criteria are parabolas, the failure locus for the (TW)-criterion with Hu=0 is
represented by an ellipse.

The equation for the (038,,)-intersection of the quadric failure surface in the
(0,,0,,05)-principal stress space is expressed by the polynomial (9] :

) 2
ad,, +boj +2ho,8 , + 288 +2fo,- 1=0 (37
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Fig.3 The (03612)-principal diagonal intersections for oriented polycarbonate
according to the three versions of failure tensor polynomial criterion
(EPFS): The elliptic paraboloid failure surface, (TH) : The Tsai-Hahn
criterion and (TW) : The Tsai-Wu with H”:O (i#j) criterion.
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The coefficients of this second degree polynomial and the necessary and sufficient
conditions so that the curve represented by relation (37) is an open-end curve
(parabola), were examined in detail in refs. [6-9] and [16].

It is evident from these plottings that the (EPFS)-criterion and the (TH)-criterion
yield open-ended surfaces, whose (049 ,,)-intersections, which are symmetric
intersections to the failure surfaces, present the following differences :

(i) The (EPFS)-intersection has its symmetry axis parallel to the hydrostatic axis,
whereas the (TH)-intersection is strongly inclined to this axis.

(ii) The (TW)-intersection is aclosed curve (ellipse),whose principal axes are parallel
to the o5- and 3 ,- axes and its center is displaced inside the second quadrant of
the (048,,)-plane.

(iii) The most venerated experiments by Bridgman [4,17] have definitely established
that the resistance to failure of all materials (isotropic and orthotropic) is much
higher than their resistance to failure in simple compression. This fact implied
the principle that the failure strength of materials to a loading mode approach-
ing the hydrostatic pressure should be very high, so that their failure surfaces
should be open. Then, the (TW)-criterion with Hij=0, (i#J) which yields a failure
stress under hydrostatic pressure, which is of the same order of magnitude with
the failure stress in simple compression is unacceptable, as it is also any other
criterion represented in the stress space by a closed surface.

Therefore, the Tsai-Wu criterion stating that all interaction (off-diagonal) terms Hij
are independent and should be determined experimentally constitutes, instead of a
failure criterion, a curve fitting process, not based on any phenomenological trend,
and establishing only a failure condition with statistical features.

The difficulty in executing complicated tests to define the failure characteristics of
anisotropic materials explains the paucity of such tests in the literature. The only
triaxial tests with anisotropic materials existing in the literature are those executed
with mildly anisotropic high-polymers, mechanically or thermally deformed, to lend
them some amount of orientation as it is the oriented polycarbonate (OPC) [13-15].
There exist also some triaxial tests with foams and porous materials, as well as with
sands and rocks, but all these results are not sufficient for studying the failure loci of
these materials.
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Figure 3 presents the experimental results from ref.[18] referred to the principal
(04,8,,)- diagonal plane of the oriented polycarbonate. In the same figure the
(049,,)-intersections of the three failure loci studied in this paper are also plotted. It
is clear from this [igure that the (EPFS)-criterion is closer than any other criterion.

4. THE ISOTROPIC (0,,0,)-INTERSECTIONS OF THE FAILURE LOCI

[t has been already stated previously for the (EPFS)-criterion, that the high values of
failure stresses in tension and compression along the strongest principal o;-stress
direction influence considerably the shape of the elliptic intersection on the
transverse isotropic (0,0,)-plane. Furthermore, the centers of these ellipses are
displaced along the 45°-diagonal in the first or the third quadrant, so that for
compression-strong materials, like oriented polycarbonate, the higher differences in
failure stress appear in the compression quadrant, whereas for tension-strong
materials, like oriented polypropylene (OPP), the highest differences lie in the first
tension-tension quadrant.

While for strong o,-stress axis composites the transverse ellipses become much
oblonger as the o5 - and 03 -stresses become higher, for weak-symmetry axis
composites, like the woven-fabric composites [19] and the fiber composites, whose
ratios of elastic and shear moduli are such that the respective values of their
eigenangle approach the limiting value for isotropic materials w, = 125.36° [20], the
respective elliptic (0,0,)-intersections tend to become circular by reducing the lengths
of their major axes [21].

By taking advantage of this property we examine the failure loci in the transverse
(0,0,)-plane of symmetry for the three versions of the criterion. The transverse
intersection of the general quadric surface, by the plane of symmetry of the material
is given by, in the (0,0,)-principal stress coordinate frame:

2,2
H  (07+07) + 2H,0/0, + h,o, + ho,-1=0 (38)
The same equation for any off-axis of symmetry Oxy- frame is transformed to :

Hyx0f + Hyyoj + 2H, 040, + heoy + hyo, - 1=0 (39)

where the coefficients Hy, H,, H,, h hy are expressed by (2] :
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Hyx=U, +U,cos20 + U,cos40
Hy =U, -Uycosif + U,cos40
Hyy = U, - Uycos40) (40)
hy=hy =+ +h)=h, =h,

where 0 is the angle subtended by the principal direction of the material and the
direction of loading. The coefficients U, are given by 2]:

Y, =é[3H11+3H22+2H12+H66]
Uy =1 H, Hy=0 0
U3=%[H11+H22 Zle'Hﬁﬁ]
U4=%[Hn+ Hy, + 6H,, - Hy, |

In these relations the following expressions for the off-diagonal coefficient H,, are
valid for the three versions of criteria studied here :

(i) For the (EPFS) :

1
Hy =§(H33'2H11)
(ii)For (TH) : H
1L 42
H,=-— and (42)
(iii) For (TW) with H=0, (i#) :
H, =0

Introducing relations (41) and (42) into relations (40) we derive for the three criteria

the following expressions :
(i) For the (EPFS)-criterion :

H = 3 (@H, +HyyrHo) + GH  -HypHep 0sdB )
43)
Hyy = -é- ((BH,,4H, -Hoo) - (4H, -H, - Ho cosdt )

125



(ii)For the (TH)-criterion :

1
H.‘(X = §{(5H11+H66) + (3H11-H66) CO540 }

1 (44)
Hiy == §((H11+H66> + (3H“- H) cosdb)
and
(i) For the ( TW)-criterion with H=0 (for ixj) :
1
Hg = 3 ((6H”+H66) - (ZH“-H“) cos40)
(45)

1
Hy = §(2H“-H66) (1-cos48)

For an arbitrary biaxia] in-plane loading mode of the plate with o =0, relation (39)
becomes: o

Hyy(0¢+02) + 2Hy0x0y + h (0x+0,) - 1 =0 (46)

whereas, for an €qual biaxial in-plane loading of the plate (hydrostatic loading), with
04=0,=0 relation (46) becomes :

2(HgtHyy)o +2h 0-1=0 (47)
Relation (47) for the three different criteria studied becomes -
(i) For the (EPFS) -

(ii)For the (TH) :
(iii)For the (TW) :

Hyy0? + 2ho-1=0
H“02+2h10-1:0 (48)
2H, 0% + 2ho-1=0

Relations (48) indicate at once that any in-plane hydrostatic loading of a plate
corresponding to i, transverse intersection of the fiber-reinforced
composite, so that the fiber axes are parallel to the thickness of the
plate, is invariant and independent of the angle of orientation of
loading with respect to the principal directions of the composite.

Relation (46) implies that the elliptic intersections of the failure loci by the

(0,0,)-transverse isotropic plane have their major axes, lying along the bisector of
the first quadrant (0,00,) - right angle, equal to the respective major axes of the
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cllipses corresponding to an hydrostatic loading of the plate where o,= 0,= 0, since
for them also the same equality of applied stresses 0y, O is also valid. This is valid
for any loading mode of the plate, where either the external loading is either on-axis
(0=0°) or off-axis (0#0°) oriented, relatively to the principal material directions.

On the contrary, the other principal axes of the ellipses (minor axes) depend on the
0-angle with the maximum deviations appearing at 6=45°.

Figures 4 and 5 present the elliptic intersections of the three failure loci studied for
the oriented polycarbonate, whose failure stresses in simple tension or compression
are given by the values (36). Figure 4 corresponds to angle 6=0°, whereas Fig.5 to
angle 8=45°. Similarly, Figs 6 and 7 give the same intersections of the failure loci for
the oriented polypropylene, whose properties are given in refs. [13] and [14], for
angles 6=0° and 0=45°.

By comparing the ellipses of either pair of figures one may realize at once the
coincidence of the major axes of the respective ellipses, for different 6-angles,
whereas their minor axes differ significantly. It is wothwhile remarking that, while the
oriented polycarbonate is a compression strong material (trh=(h3+2h1) > 0), the
oriented polypropylene is a tension-strong material (trh=h;+2h,)<0). The larger
differences in the failure stresses between the various criteria appear for the (OPC)
in the third quadrant, whereas for the (OPP) in the first quadrant, where either
material presents its maximum strength.

By comparing the failure stresses for hydrostatic loading of the plates of the
materials corresponding to their transverse isotropic planes it is obvious that the
ratios of these stresses for the various versions of the failure tensor polynomial
criterion are considerable. These ratios are stronger for the mode of loading for
which the material is more resistant, that is this difference in failure stresses under
hydrostatic in-plane loading becomes higher in the compression-compression zone of
loading for compression-strong materials and in the tension-tension quadrant for the
tension-strong materials.

Thus, for the oriented polycarbonate the ratios of failure stresses under hydrostatic -
in-plane compression is given by :

9EpFs) * Oy - Orwy = (-73.10): (-51.12) : (-33.64) MPa
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Fig.4 The (0,0,)-principal stress intersections with 6=0° for oriented polycarbonate
according to the three versions of failure tensor polynomial criterion
(EPFS): The elliptic paraboloid failure surface, (TH) : The Tsai-Hahn
criterion and (TW) : The Tsai-Wu with H“:O (i#j) criterion.

(0PC)

AN
O\ e

Fig.5 The (oxoy)-transverse isotropic plane intersections with 8=45° for oriented
polycarbonate according to the three versions of failure tensor polynomial
criterion (EPFS) : The elliptic paraboloid failure surface, (TH) : The
Tsai-Hahn criterion and (TW) : The Tsai-Wu with H;;=0 (i=j) criterion.
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Fig.6 The (0,0,)-principal stress intersections with 8=0° for oriented polypropylene
according to the three versions of failure tensor polynomial criterion
(EPFS): The elliptic paraboloid failure surface, (TH) : The Tsai-Hahn
criterion and (TW) : The Tsai-Wu with HU:O (i#j) criterion.

ta) (0PP)

1o 1%y
7 SxEPFS ay= U}
e, Y
otk /L= N,
oy=-dy YO \
AN Tx0 :
'f- /
/\
A y
4 S
0 5 I
Ox
40 ¢3)
(b)

Fig.7 The (0,0 )-transverse isotropic plane intersections with 6=45° for oriented
polypropylene according to the three versions of failure tensor polynomial
criterion (EPFS) : The elliptic paraboloid failure surface, (TH) : The
Tsai-Hahn criterion and (TW) : The Tsai-Wu with H;;=0 (i#j) criterion.
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whereas for the oriented polypropylene the ratios of failure stresses under
hydrostartic in-plane tension are -

O(EpFs) | O : Orw) = (80.124) : (17.83) : (11.144) MPa

cut-off along the transversely isotropic plane. Since the test is rather easy to be
executed in a triaxija] type of testing machine, it constitutes the critical test for
selecting the appropriate form of the criterion.

For highly anisotropic materials, as they are the carbon glas- and other
fiber-composites the difference of failure stresses of plates corresponding to their

volume fraction VUr = 0.40 we have the following results.

(i) For the typical fiber reinforced composite the failure stresses in simple tension
and compression are given by [3, 22] :

Oy = 1340 MPa 011 = 01, =51.90 MPa

Oc3 =932 MPa Oci1 =0 =233.0 MPa

Or; =0 =465 MPa Or3 =80 MPa
O¢1 = 0, =88 MPa Oc3 =264 MPa
It is clear from these data that the 0; (i=1,2) directions lie at the isotropic plane which

is weak for the typical liber-reinforced composite and strong for the plane-weave of
the fabric.

130

Evaluating now for the two types of composites, the failure ratios under lateral
in-plane hydrostatic compression we can readily find that :

(i) For the T300/5208 graphite-epoxy fiber-reinforced composite :
OcpFs) * Orhy © Orwy = (-37,335.93) : (-392.15) : (-209.53) MPa
(ii) For the T300/5208 graphite-epoxy woven-fabric composite :
9(EpFs) * Ocrmy * Ocrw) = (437.85) : (-806.02) : (425.72) MPa

It is worthwhile mentioning that, while the ratios of failure stresses under lateral
in-plane hydrostatic loading for the typical fiber-reinforced composite are very large,
for the woven-fabric composite the ratios for Oerrs) and Oy, are very close
together, fact which can be explained by the infinitesimal influence of the weak
04-axis failure stresses on the strong failures on the plane of weave.

These large differences in strengths given by the different versions of the tensor
failure polynomial criterion in plates corresponding to transverse cross-sections on
the isotropic plane of a transversely isotropic material constitute a certain technique
for deciding which version corresponds to reality, corroborating existing
experimental results and they justify the acceptance of this method for the selection
of the best criterion.

Furthermore, since biaxial tests of lateral hydrostaric tension or compression in thin
plates are rather easy to be executed and yield reliable results, the method is
additionally convenient to be applied in a laboratory facility dispesing a triaxial type
of testing machine commonly used in soil and rock mechanics.

A series of such tests was executed with plates 10 mm thick of dimensions 50 x 50
mmm, cut-off from prismatic specimens of polymeric materials tested after they were
subjected to a mechanical and thermal lreatment to create the appropriate
orientation. As for the composites, tests in the specimens were cut at a transverse
direction to their fiber direction. Only for oriented polypropylene, which was
subjected to a biaxial hydrostatic tension the specimens were more complicated
having the shape of a greek-cross with protrusions, used for applying a uniform

tension stress along each side.
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The preliminary experimental results derived from the lateral biaxial hydrostatic
compression gave [or polycarbonate 0opcy=-72.10 MPa, for polypropylene Ooppy =
78 MPa, whereas for the T300/5208 graphite €poxy composite we could not attain
failure although hydrostatic pressures of the 1000 MPa were applied to the
specimens. On the contrary, for the T300/5208 graphite epoxy woven-fabric
composite failure stresses of Onwry = -450 MPa were achieved.

Although these experiments were only preliminary, indicated clearly that the
experimental data are in favor of the results derived from the (EPFS)-criterion than
from any other version of the failure tensor polynomial criterion. However, further
sophisticated experimental evidence with convenient equipment is needed for rising
the accuracy of the experimental results.

S. CONCLUSIONS

It has been established that the most powerful failure criteria for anisotropic bodies
finding a broad application to the study of failure of fiber composites are the criteria
based on tensor polynomials. Three versions of this criterion were briefly examined
and their differences were pointed out. These criteria are the Tsai-Wu criterion with
the simplification discussed by Narayanaswani and Adelman [3], the Tsai-Hahn
criterion [2] and the elliptic paraboloid failure criterion introduced by the author
[5-8].

The constiturive equations of these criteria were described and the important
intersections of the surfaces expressing these criteria were established. A
comparison of their principal diagonal intersections defined by their axes of
symmetry and the strong (fiber) axes of the materials gave immediately that the
Tsai-Wu criterion with H;;=0 for i#j is unacceptable since its principal diagonal
intersection is a closed (elliptic) curve which is in contradiction with the general
experimental evidence that the strength of these materials in hydrostatic
compression is many times larger than any other failure limit.

On the other hand, the Tsai-Hahn criterion having its axis of symmetry inclined to
the hydrostatic axis and depending on the particular mechanical properties of each
material is not in conformity with results consisting of an hydrostatic pressure
superimposed with either a tensil or compressive simple loading where the effect of
this additional loading should by independent of direction.
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Finally, the elliptic paraboloid failure criterion presents intersections whose shapes
and positions are in satistactory agreement with existing experimental evidence.

T'he strong (0;)- weak (o, Or g,) - intersections of all three criteria give do'ubtful
results not allowing a striking superiority of one of them oven the othe.r two cr.itena_l,
but they are in fairly satisfactory agreement with experi‘mental evxdenc’e.m this
important plane which represents the plane of anisotropic §heets c.oma‘xmr.lg the
fibers of the materials and therefore are important in applications. This com'clde'nrte
is mainly due to the fact that all three ellipses representing thelloci of these cm.en.a in
the (05,0,) principal stress plane should pass from the same.pomts alfmg the principal
stress axes, thus not allowing large ground for significant discrepancies.

It was shown in this paper that the other principal stress plane, the isotrlopic (04, 0,) -
plane, presents on the contrary significant differences in the failure loci for the three
versions of the criterion thus allowing a safecomparison between the results of the
three criteria, as compared also to experimental evidence, especially along the

diagonal 0,=0, (tension or compression) loading.

Again a comparison of the three versions of the criterion with isotropic plates
cut-off from three dimensional specimens perpendicularly to the fiber direction
indicated clearly the superiority of the (EPFS)-criterion over the two other versions.
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