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ABSTRACT

The present study was intended primarily to establish the reliability of a batch of pipes having an
inner axial flaw and being subjected to an internal pressure. The influence of the flaw depth on
the risk of failure was evaluated. Subsequently, a generalization of the relations obtained was
done for a larger size range. First, a FE model was used to obtain the stress concentration factor
at the tip of the flaw, for different depths and pipe dimensions. The basic results were very close
to those obtained by the BE method. Then, a fracture mechanics approach was considered in’
order to evaluate the stress intensity factor at the tip of the flaw. In all cases, linear elastic
behavior of the material was considered.
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INTRODUCTION

The aim of this study was primarily to investigate the reiiability of a batch of pipes $32x4, having
an axial inner flaw, produced in the rolling process. Working in rather heavy conditions cf
pressure and temperature, it was essential to know the influence of the various depths on the
local state of stresses.

Fig 1 General geometric configuration of the studied problem.
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The geometry of the flaw was considered that of Fig. 1, with a 20um radius at the tip. The
:nagnlmde of a was estimated, with adequate ultrasonic equipment to be between 120pum and
200um, so the flaw could be hardly considered as a typical crack. Consequently, the problem

Wwas first solved as a stress concentration problem and then the fracture mechanics aspects were
considered.

STRESS CONCENTRATION PROBLEM
In order to Investigate the stress concentration around the flaw, two models were considered.

The study was done first with FE model of the pipe section, shown in Fig. 2, taking R| =12 mm
anfi Ry =16 mm. The symmetry about one axis was considered and the mesh was progressively
refined towards the flaw. Conventional quadrilateral isoparametric elements were used, under
plane‘stram conditions. The mesh was slightly modified for different depths of the flaw. As
Guydish and Fleming (1978) have shown, different meshes can lead to different results when
usual f:lements are used in fracture mechanics problems. In order to have a control over them,
two dlﬁ'e_rent meshes were used for one depth of the flaw (a=140um). The results were slightly
different in groups | and 2 of elements (see Fig. 2) and identical in groups 3 and 4.

|
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Fig. 2 FE model of the flawed pipe.
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I'he unique loading was an internal pressure of 4.5 MPa(45 bar), which was applied also on the
inside of the flaw. the difference between the numerical hoop stresses and the exact ones
calculated with the thick-walled theory did not exceed 2.6%. for the elements of group 4 in any
of the FE model variants. Thermal conditions were taken into consideration by referring to the
yield point of the material at the working temperature. In this way, the critical situation was
considered to be attained when this value was exceeded by the equivalent normal stress,
obtained with the Huber-Hencky-Mises criterion of plasticity:

1 2 2 2
ch:\/;[(cl_cz) +(02_01) +(01_G|) ] (1)
where 6, 5;, o3 are the principal normal stresses.

Following this idea, a linear relation was obtained between c:‘q and a, by the least squares

method, starting from pairs of values obtained on the FE model. This relation, with a high factor
of correlation (0.983), was:

6., =0.297a+69.5 (2)

o 1 : ;ir:; - and 1s presented in Fig. 3.
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appeared to be 170 um.
A similar approach was done using the
Fig.3 The relation between o, and depth of flaw  BE method. For this second model, the
obtained by FEM, respectively BEM. nodes defining the elements were chosen

8.5 in the same portions as those used in the
“{ ® rEM FE method, on the contour of the modai.
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] //, The values of ¢, , for different depths of
- ~ the flaw, are presented in Fig. 3. The
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obtained in a similar way as before, was

ol =0.34a+712 (3)
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and 1s presented in Fig. 3. All this data

were obtained under the same plane strain

assumptions, as in the FE model. This

Fig.4 The relation between a: and depth of flaw, ~ !ime, it can be seen that the critical depth
obtained by FEM, respectively BEM of the flaw was 144um.
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The analysis of the flaw effect on the stress distribution in the pipe was generalized, using only
the FE method. A stress concentration factor ak* at the tip of the flaw was defined as-

o,
a, =— (4)
c
q
where G, was the equivalent normal stress obtained with the FE model and o:,, the similar
stress with the thick-walled tubes theory. For both values, formula (1) was used, in which the

principal stresses were numerically obtained in the first case, and, in the second case, were
calculated as follows:

o, =V(o, +0,) ()
c B 1 uF
3 p R.Z, _ R|2 rZ
SO—J In this way, 6., was calculated with the
8 . oo o nominal normal stresses at the tip, located at the
/ radius r = Ry+a. The Poison's ratic was
7o considered to be 0.3.
%k
6.5 / In Fig. 5 are presented the values for a: for the

oo & values of a considered before, obtained by FEM
and BEM respectively. In Fig. 5 and 6 are

5.5 ®
presented the relations between o, and a/t and

R/t respectively, when supplementary values for
Ry, Rp,and a were considered. In Fig. 7 is
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Fig. 5 The relation between o, and a/t

btained by FEM presented the evolution of a: at the tip, in the
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bulk material in the plane of the flaw.
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Fig. 7 Evolution of a:, at the tip of the
flaw, obtained by FEM.

Fig. 6 The relation between a: and R/t

obtained by FEM.
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FRACTURE MECHANICS PROBLEM

A fracture mechanics approach was also considered in order to evaluate the stress intensity
factor at the tip of the flaw.

First, a theoretical evaluation was done, using the relations found in Anderson(1991) for thei
calculation of the stress intensity factor for mode [, in the case of a long part-through axia
internal flaw in a pipe with internal pressure:

__2PRE F 2 &) (6)
vt LA e
where the function F is given by:
2 a 4
F=|.1+A[4.951(%) +1,092(?) } 7

and the coefficient A is:

R 0.25 8
A:(O.IZST‘——OQS) (8

The above formulae are valid for a/t < 0.75 and 5 <R/t < 10. The first condition was fulfilled in
all cases, while the ratio R/t was situated between 3.5 and 3.93.
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Fig. 8 Fracture mechanics FE model

497



For example, K{=0573 MPa\/E in the case when R, =12 mm, Ry, =16 mm,a=02mm,t=
4 mm. Anyhow, the values obtained with these formulae were smaller than those found from
the numerical modeling.

Numerical values were also obtained, using a special linear-elastic bidimensional FE program.
The stress intensity factor was obtained only for the pipe having Rj=12 mm, R»=16 mm and
a=200pm. Two methods were used in order to establish the value of the stress intensity factor:
the virtual crack extension (VCE) method and the J-integral. Due to symmetry considerations
only half of the region that surrounds the crack was modeled. and this time, quadratic
isoparametric elements with eight nodes were used, avoiding the special crack tip singularity
elements. The first mesh, mesh | (see Fig. 8a), covered only a very small area around the crack
tip, having 0.5 mm-width and 0.8 mm depth. The second mesh, mesh 2 (see Fig. 8b), had a
width of 1 mm and a depth equal to the thickness of the pipe wall, that is 4 mm.

The VCE was 0.001 for both meshes The J-integral was calculated as passing through the
elements 3-10-11-6 and 2-12-13-7 for mesh 1, and through the elements 1-9-10-4 for mesh 2. It
was preferred to employ a 2x2 numerical integration rule since it was shown also by Owen and
Fawkes(1983) that the two-point quadrature positions are the optimum location for stress
evaluation for the eight-node elements. For the chosen elements, the values of the stress intensity
factors were calculated with the J-integral for the paths going through the Gauss points closer to
the crack tip, line 1, and farther away, line 2. The obtained results are presented in table 1.

Table 1. Numerical results for the stress intensity factor.

Mesh Method FElements J-integral path Ky, [MPaNm]
Mesh 1 VCE 1.25
J-integral 3-10-11-6 line 1 1.03
line 2 1.33
2-12-13-7 line 1 1.63
line 2 210
Mesh 2 VCE 2.42
J-integral 1-9-10-4 line 1 1.54
line 2 2.39
CONCLUSIONS

* .
The study revealed interesting relations in which ! and mostly «, are involved. For
example, the values obtained for o, were only slightly different when two meshes were used,

* &
but very different when renumbering the same mesh. Another Interesting aspect was that o, is
constant for a small variation of a/t or R/t. It must be mentioned that these narrow intervals for
</t and R/t were obtained by modifving only R,.

[t in also to be noted that a: is very steeply decreasing with the increase of the distance from the
tip of the flaw, and attains values slightly under 1 up to a distance of the same order of
magnitude as a, betore increasing back to 1. Consequently, refining the mesh seems to be
essential, at least for the study of the stress concentration factor.
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I"or the fracture mechanics approach, the analytical formulae cannot be used in our problem, and
ve have to rely on the numerical results. The stress intensity factor calculated by the J-integral is
‘mailer for the elements closer to the crack tip due to the fact that the elements are unable to
model the singular behavior near the crack tip. It can be noticed that for the second mesh, which
models the entire thickness of the pipe, the stress intensity factor is greater than the one obtained
from the first mesh, a fact that seems to be peculiar. The influence of the mesh refinement on the
correct value of the stress intensity factor is not yet well understood.
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