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ABSTRACT

Model describing process of single and multiple fracture
layer composite materials composed with microheterogeneous
components under long-term load 1s developed. Accor Ing to
this model,we represent each layer of composite In sense of
characteriétics rigidity as a continuous set of ternary

'Structural elements 1involving or fiber cuts, bonding agent

and adheslve layer (dimensions of each element are equal) and
as contlinuous, totality of {ts energy levels, 1n sense of
characteristics strength. The conception of damage
accumulation as sequence fracture of structural elements with
simultaneous change 1in elastic and strength characteristics
of undamaged components 1s laid In the base of model. This
grocess could be accomplished 1In concentrated or scattered
amage accumulation direction completing so-called single (by
one magistral crack development) or multiple (dispersive)
fracture. The sStrength and elastic properties of each
separate microvolume component are robable quantities
distributed correspondingly by normal and Weibull laws.
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MATHEMATICAL SIMULATING OF COMPOSITE MATERIALS

Composite materials or materials of class (K) are .known as
materials consisting from two or more Interinsoluble
omponents with different physical and mechanical properties.
There are three factors as necessary condition to preduce
composite materials: reinforcing elements, bonding agent and

adhesive layer. Denote them with symbols (I’(,K,K). Triplet or

these parameters one can consider as vector K corresponding
with material under consideration. By varying parameters
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(K K,K) 1n direction of 1ts mechanical and structura
- 1
properties change one receilve a new composite material and

corresponding vector K. A population of all such vectors

forms space (K}. Unit g0t by various ways vector
Spa 5 spac
one recelve a notion of erspace (Delyavskfi, 1990a), S

{& ¢ f} v {E@) v 0 FY, ()

which 1s a mathematical model of composite mate

L rial. We
consider the class of layered compositespon which there 1s a
Sequence 1In one directlon of = successive layers having

thicknesses h(%/, ret h Dbe the thickness of the complete

material, and then (%’ = h(k)/h zs the relative v
content or layer k in the composite (& = 1, 2, ..., n?.lu%g

consi(d7e)r the vector for the volume content of the material (:)'
{w ...w(”i}. The set of those vectors constitutes a

vector space (1), which we call the s ace of geom :
characteristics for the composite. Similarly, wg haev%riggé

space of mechanical characteristics {3!} » Let's Introduce a
vector space

B - @@,
as an 1Intersection (n) of the conside
corresponding to it a scglar space red epaces and

©- @) .

made by spaces (M} and (() scalar product. Let's denominat
rﬁg.l%:ation 3) as effectlve transrormgtion of the second kincl(.e

- %ng use of the effective transformation of the first kind
(Delyavskii, 1990a) let's present considered plate as
cggcltinuous totality of structural elements —-parallelepipeds
;ath the volume wv. We sefarate one layer with composite
] Ferial and Introduce for its following assumptions.

. ﬁr each composite material 1t 1s always possibly to find
sxvchc effectivly homogeneous material = that displacement
eceilclai)r components for both materials in the same points are
2.Rigldity and strength tensor components at each oint
e 0
material are random quantities pwith the distg'ibutiorrl
;»:scribmg by thethreeparametrical Weibull law.
3.Aver th respect to the structural element in any
material point the rigidity parameters b (v) are deterministic

and strength parameters T(v) 8re probably quantitieswith the

dZstribution describ by the normal law.

?‘éggggrggt% rgg%gggalerr ecitive(rcompone{lrfs distribution with
eglon TOm PO

described by the unirormglaw. P v T point) 8 been

60

Effective Structural Element Rigidity and Base Volume. Let

the distribution for the random rigidity tensor component be
described by a Welbull law (Welbull,1939; Korolyuk et.
al.,1985) 1n triparametrical representation:

P(8) = 1 - exp{—(u/5)[(8-b)/(b-b)I™}. (4)

We now consider the ghysical S&Fuficance of the parameters
in Eq. (4). It 1s evident (Welbull,1939) that m characterizes
the microstructure 1inhomogenelty: the larger m, the more
homogeneous the material. In any real material, 7 < m < o
(the  case m = 1 represents an absolutely heterogeneous
material, while m = o represents an absolutely homogeneous

one). If there are some n* elements with partial or complete
damage among n composite material structural elements, then

relation n*/n completely corresponds to the parameter m
interpretation. So glven parameter one can consider as

materlial damage measure
m=6=n*/n. (5)

Volume (5) 1s a measure of material structural nonhomogenelity
We'll define 1t as average volume of pore (defect) and denote
as a base composite volume. We assume that 1n some volume v
may have with 1dentical probabilitles not only microcracks,
whose rigidity 1s zero, but also microinclusions, whose
rigidity may be taken as Infinitely large, which gives us the
tensor for the effective rigidity for the semiinfinite range
for the elastic characteristics (Korolyuk et. al.,1985)

Dy)= b+ (b “b)(we) M T(1+1/m) (6)

It 1s obvious that each of these distinct volumes v cannot be
less than the elementary volume 5. We conslider a volume v
such that the effective rigidity vector 1s equal to b:

v = 8(T(1+1/m)I™, (7)

in which the expression in (-] 1s a I'-function of fractional
argument. As I'(7+1/m)< 1 for 1 < m < o, b cannot be attained
for any real material, and we call 1t the theoretical
rigidity tensor; b - rigidity tensor for real materials.

Statistical Distributionof Internal Energy and Energy Levels
of Composite Material. We conslder the critical (falluring)
potential energy as randomquantity Yiuj distributed by normal
law. Mathematical expectation M , and dispersion Dw  ofthis

quantity we determine on test notched spesimens with material
at 1ssue according to technique (Delyavskil, 1990a) The
otentlial energy of structural element near notch tip
etermine as
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w> = (2) m(2)
> }Z: bt/(v){ Z:; gr(t)gé(J) +

r,38,p=1

(1) p(2) (2) pl1
! [,Tr-(t)gsu)”?r) i 'fr(ugg(j)f(’s)Jﬁ d (8)

o |2(1) p2) (1) m(2)
Lr(z)psm I CN O LICAR R
o
o) 4 'pzdr,d.z‘g
= Tp f f —
! 2"91‘92 Ir
; Pt Pzdr dr
I(?,..JS) = Z‘J‘ I ! 2 . (9)
5,p ;
S N

Ip = TotT,48,T, ;

where

<> = ﬁ-(:). . (10)

Symbol <> denote average (scalar) value ﬁ; 'o — curvature
radius at the notch tip; 21 - 1ts length; b” - coefficients
of matrix rigidity; T’(,'(’{ ) — factors expansion in terms of

fraction power #. Strain tensor components <€,>. We assume
that damage to a structural element distinguished near notch

;égiso&cégs (In average) always when the next condition 1is

x
<W>(U) = l“7'(1;)' (11)

Where () denote critical vals of quantity at issue. Equat

It‘g%gtiggiterial condition td the experimentally determine

1/p, = CotCyy THe, 1, (12)
where p, 1s I1imit ofr proportionality notched specimen; c

(J=0,2) - experimental constants, we t three t )
equtions system with respect to tl%ae unlmowntr%%?'ﬁ%r%%igi

element dimensions and the quantity H[w(u )]. Dispersion
D'V(U)] we find as (Delyavskii, 1990a) . aving

-1 (n) 2
W) =5 ["’v; - ""’(w] , (13)
. .

found dispersion we determine minimum ‘vgﬁj’” and maximum
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(M%) random quntity ¥, distributed by the normal law. Let
we introduce the notion of structural element internal energy

il
U(U)-zbu(,U')<rt>(w<rj>(v} . (14)

A3 potentional energy exgressed in terms second kind of
gtrength (Delyavskil, 1990D).

P>y = Ty 0 (15)
#e assume that

Yw) = V) (@63
let divide up an interval of change ‘V(U)E[Wgﬁjn),Wfﬁ‘;x)] into

subintervals so to at each one the quantity D‘v(u)] would be

minimal. Upper boundaries of subintervals we ~call the
composite material energy levels. Then we find probablility Gg

of hit arbitrarily chosen structural element on energy level
tel. It allows to determine probable number of elements Nrag

related to each o{ the energy level.

Mrgy = Mg (17)
Concluding stage material simulating 1s a procedure of
placing of structural elements, each of them elongs to a
Jome energy level occasionally on the material region.

SIMULATION OF THE DAMAGE SET AND CRACK INITIATION
AND PROPAGATION IN COMPOSITE MATERIALS

[t introduce a notion of the damage set mechanism. For each
mechanism there acts only one component <Wt>(v ) of

potentional energy, which characterizes the damage to the two
components of a structural element: the fiber and bonding
agent, under loading apgﬁied along reinforcement - mechanism
[; bonding agent and adhesive layer under normdl and shear
forces applied in the 1plane of layer and the perpendicular
direction - mechanism II and mechanism III. Let us call these
components as low-strength and high-strength component of
structural element. In 1ine with that we represent total
potential energy as sum energy for each fracture mechanism
III

<W>(U) = E <Wt>(u}' (18)
1=

) _ 1 2
N> w) = 1109511700

9 2
Wrr2(u) = 200 )<C207(y) * (19)

, e 1 2
120v)°C117 00, %227 0) T Ds (v <C667 1w

where
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1 2
W12y = 233(v)€33% ) *

+ Qa
1300) €117 (0)C38° (v) * Bog0)<Cap>1y, <E55>, ) +

1 2 1 2
P a00)C48% 0) F D50 Ess Oy, -
The subsript (v) denotes avera,
&
structural element; a”(w - Coefficients o compliance
matrix. Let consider the triad of parameters <Ww,>
(t=I,II,III) as vector <W>(U) and put 1t 1in relation to tﬁé
vector for internal energy U (v)* The lexicographic order

between these vectors is H
Delyavsk11,1991) (Bronshtein and Semendyaev, 1981 ;

with respect to the

<W>(u) < <U>(U):<W > =0 (t<n);

LA L (20)

<W£>(U) < Ut(u) (i>n),

which 1s called the damage ac
over all components ag cunulation and their collocation

We>i0) 7Ui(u) , 21)

18 taken as the damage to a Strictural element. It 1s assumed

1f  component of potentirnal energy <Wi>(u ) Teach
corresponding ener level all the structural eleme

belong to this level will be completely or partiarllfg
damaged. The damage set for each layer in the cumposite 1is

taken as the vector
As*¥(R) _ 2x(k )
<68> =n ( )/TL( )’ (22)

whose components are the ratlos of the numbers n*(%/
of thi
partially or completely damaged structural elements to thg

totaghgumdz%r ré(k). Weuinai{le the follow assumptions:
accumulation 1s a continuous ve

grocess deveafoping in time and space; SUOF Tam

p(%intthse indartnﬁgemattoeritgle W?ltr'uctur:(ajl1 Tdelramta}r]l‘;:s occurs at those

ere con ons have

% l&{gitdigmg equ%librium; o attalned a state
S accompanied by change in the elasti

Sg;gggggts gﬁﬁ%acterésti%s of the undamaged strucctuﬁgg

- ose ¢

ve;lements. aracteristics are zero for the damaged

€ represent the damage accumulation for each layer of the

composite as a vector damage sequence of strength levels

SubJject to the criteria (20) and (21) with simultaneous

Treplacement of the mechanical properties of the material at

the various energetical levels. We take the vector kinetic

equation for the damage at the [s(k/’] level as (Delyavskii,
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1991)

d<8, >[5 = 4(R) - 23)
{ (k1" ’
[7 = <8t>[ e ]]
in which ®, 1s a criterial function which corresponds to the
conditions Qt = O for the unloaded state and Qi = 1 at the

Instant of failure.

Multiples Fracture. We split up the damage accumulation
process In view 1ts the nonuniformity into v stages, each of

which corresponds to damage at the energy level (s(*/) (on
one of the components) with simultaneous changes 1in the
elastic and strength characteristics of the composite at the
other energy levels. We specify the law followed by the

Young's moduli bﬁ{s ; and the effective material strength
(k)
parameters r o7

because of the damage 1n the realization of

stage v at each level [3(®/] 1in the form
v—1

(R) *(R)
Oprar * E <B4>rs7

b(lia ] *x(R
3
v} <et>[8]

(k) _
Stt{s) = » (24)

Ef?} = sfk’ + [p® - b(k)][Vfgj/a]?g?r[efgﬁ)]. (25)

v

(k) _ (k) (k) (k)
T17tsl = $T42ra7 Biersl / Dirsd- (26)

The () means that the value of the parameter 8 is calculated
at the end of stage q; Vf’;} - energy level ta(®)y volume. The

law Poisson's ratio change 1s taken from the condition for
symmetry in the rigidity tensor bij[s]' Let's consider the

first stage v = 7. We provide a small increment to parameter
t and calculate the damage to all the layers of the composite

at the energy levels ta®)1. Prom (25) we calculate the
reductions in rigidity at the energy levels and for a layer
a8 a whole as_functions of the damage; we derive the changes
n the effectlve modull for the layered composite and
establish the redistribution of the macroscopic stresses and
macrostraln for each energy level in the scalar and vector
spaces. We test (21) on the low-strength component of a

ener, level [1””]. If the test 1s not obeyed, we increase
the Increment and repeat the procedure. If the criterion is
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met, we recalculate the strength Parameters for each enerﬁy
levels, we derive the redistribution of the stresses in the
unfailured parts of the structural elements and agailn test
(21) for the high-strength component of the first energy
level. There are two possibilities: the test 1s not met, so
We 1Increase t and repeat the procedure, or the test 13 met,
in which case we re eat the described (}peration . We thus get
the critical time for the mechanism art

the structural elements 1n the layer occurs Spontaneously
because of the Stress redistribution 1n the unfallured
elements. The time at which the damage attains the critical
ﬁ.%ue in the layers in the composite represents the working

e.

Single Fracture. Assume that 1in stage v with m partially or

completely fractured structure elements & elements find
oneself abreast The result Of such event with probability

P:cﬁ ol (27)

we treat as apgearance in material a crack of dimension k. We
take 1nto consideration such two-component model of composite
material with crack: composite 1s” effectively aniso ropic
continuum in macrovolume;” its elastic property defined 1in
fracture single moment; material rigidity parameters 1in
microvolume determined from formula (6), where accepted that
b(v) — material effective rigldity on single fracture stage.

Assume that under conditions <Wt>(u):Ut(v) crack grows up

according to mechanism { on the dimension volume v and
T'eépeate -~ proposed brocedure up to Spontaneous  crack
propagation.
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