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ABSTRACT

Asymptotic crack-tip field is analyzed for a Mode III crack in a power-law material con-
taining a distribution of micro-cracks (damage). Constitutive equations for the overall
macroscopic strains and stresses are derived via a homogem'zation-tedquue. Asymptotic
analysis is performed for the crack-tip field by solving a nonlinear eigenvalue problem.
Numerical results are presented to explore the effect of damage on the crack-tip field.
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INTRODUCTION

The stress and strain distributions near a pre-existing macro-crack tip may be consider-
ably altered by the presence of micro-cracks or micro-voids (damage) in the immediate
neighbourhood of the macro-crack tip. For assesing the initiation and growth of a macro-
crack, a realistic model should take the influence of this kind of damage into account.
In this paper, a stationary and semi-infinite Mode III macro-crack in a power-law solid
containing distributed micro-cracks, here regarded as microstructural damage, is investi-
gated. The micro-cracks are assumed to be randomly located but non-randomly oriented.
Thus, the damage considered in this analysis has an anisotropic nature, and the associated
overall macroscopic behavior of the damaged solid is also anisotropic. Constitutive equati-
ons for the macroscopic strains and stresses are obtained by a homogenization-technique,
under the assumption of geometrically identical micro-cracks with a dilute concentration.
An asymptotic analysis is performed for the near-tip field of a macro-crack by solving
the corresponding nonlinear eigenvalue problem. It is shown that the crack-tip field of
the damaged solid has the same structure as the Mode III HRR-field (Hutchinson, 1968;
Rice and Rosengren, 1968) of the undamaged solid, under the assumptions made in this
analysis. Numerical results are presented to reveal the effect of microstructural damage
on the angular functions, the contours of constant effective shear stress, the normalization
constant appearing in the crack-tip field, and the crack opening displacement.
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CONSTITUTIVE EQUATIONS

Let us consider a homogeneous, isotropic, and power-law solid containing a random distri-
bution of micro-cracks. The solid js assumed to be in a state of anti-plane strain. Hence
the F)nly non-zero displacement component w is in the z3-direction, and the non—vanishing,
strain and stress components are v, and r,, where a =1 and 2. The undamaged (unmicro-
cracked) solid is characterized by the following complementary potential function

Yo = ay,r, Teynsr 1
¢ 0(7‘0) n+1’ (1)

where 7 i o i i
e 4]) 1s a reference shear stress and Yo 1s a reference shear strain, a is a dimensionless
materia 1 1 1 i
fal constant, n is the material hardening exponent varying from unity for linear-

elastic solid to infinity for rigid ideal-plastic solid, and 7, is the effective shear stress
defined by

Te = (TaTa 1/2_
(TaTa) (2)

among them can be neglected. It is further assumed that all the micro-cracks have the
' ' Under these assumptions
and by using the commonly applied homogenization technique, the tota] change of the
complementary potential function can be approximated by

v, = 2po/J(a)da, ‘)

where p denotes' the number density of the micro-cracks (number of micro-cracks per unit

firfc‘:a? and J(a) is the. J-integral (Rice, 1968) of an isolated anti-plane micro-crack in an

1:1 'm(;t': power-lawfv solid. Although analytical result for J(a) is available (Amazigo, 1974),

le is 1f'ﬁcult to 1mp.lement this result into the present formulation, since the analytical

prre.sslon for J(a) 1s.extremly complicated. For simplicity, an approximate formula for

(a) is used here, which can be obtained by using a perturbation method (Abeyaratne

1983; He, 1987; Zhang and Gross, 1991). The result is Y

I(8) = L argory( Ty 2088 = rising

2 7DTO(TO) ( ) ) (4)

Wh:te d);s thehorientation angle of the micro-crack with respect to the global coordinate
System. Note here that Eq. (4) is exact for n=1, j.e linearl i id. § ituti
: =1, i.e, y elastic solid. Substitut

of Eq. (4) into Eq. (3) yields e

Te

‘Ilc:ﬁ 2 Te\n+1,T2C05 ¢ — 7 s5in @
5 Pra ‘1'707'0(T0) (————2 2%y (5)

Te

The total complementary potential function of the damaged solid can be written as

s Ters 1 ¢
U=y, + ¥ = 0‘707'0(;) +1n_ T_ 1 1+ wr(n + l)g(Tz COs @ — 7 sin )7, (6)
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vhere w = pa? is the crack density parameter which is regarded as a damage parameter
' the present analysis. By using Eq. (6) the constitutive equations for the damaged solid

in be immediately obtained as

o i
Yo = o = (1T 4 g (M
iy To To
in which
NG . BV T2r2 oy
fi= u.nr;i{(n + 1)(12 cos ¢ — 7y sin ¢)? — ;[(1’2 — 71)sin2¢ + 21,7, cos 24)} (8)

fi= wwg{(n + 1)(r2cos ¢ — 7 sin )% + ;[(rf — 12)sin 26 + 27,7, cos 241}, (9)
e 2

It should be noted here that the damage state is characterized by both the damage den-
sity parameter w and the damage orientation parameter ¢. Hence, the damage considered
here has an anisotropic character. Consequently, the overall macroscopic property of the
damaged solid is also anisotropic, as can be directly recognized on Eq. (7).

CRACK-TIP FIELD

Consider now a stationary and semi-infinite Mode IIT macro-crack in a power-law solid
containing a distribution of micro-cracks. In general, the damage or the micro-crack
density parameter w should decay with increasing distance from the macro-crack tip. In
this analysis, however, it is assumed that the distribution of micro-cracks is approximately
uniform near the macro-crack tip so that the damage parameter w can be regarded as
constant. Small strain theory is used here, and the damaged solid is characterized by the

constitutive equations (7).

Figure 1: Polar coordinate system

For convenience, a polar coordinate system (r,6) with origin at the macro-crack tip is
introduced, as shown in Fig. 1. In the polar coordinate system, the equilibrium equation

can be written as

A(rr,) Org
ot =% we)
while the compatibility equation may be stated as
o(rye) Oy,
N el 1y
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To perform an asymptotic stress analysis at the macro-crack tip, a stress function F j
introduced, which is related to the stress components by ‘ e
. _toF oF

Toroee PS5 (12)
With Eq. (12), the equilibrium equation is identically satisfied. It is assumed that near

the macro-crack tip. j
le., f : :
form as p, yfor 7 — 0, the stress function can be expressed in a separated

F=—Arpr R
Aror* F(9), (13)

where A is an amplitude factor, a i
4 » and s is an exponent to be determi d. E i
with Eq. (13) together results in - peton 22
T = ~—Ar0r"1[7”(9), To = A‘rosr"‘F'(G) s (14)

T(8) = (F" 4+ s2F?)1/2 (15)

Te

Il

ATgT‘—lf’e(a) ,

in which (-) = g(. ituti
ich (-)" = 8(-)/86. Substitution of Egs. (14) and (15) into the constitutive equations

(7) and subsequently j ibili i
. ¥y into the compatibility equation (11) yield i i
ordinary differential equation ! (1) yields the fellowing nonlineas

{(n.—-l)F_”(F" +p)+ 7 —2Fp + wr\/Tﬁ{(n +1)M? + 2(n+ 1)F'M sin(6 — ¢) +
2sF(F' sin(26 — 2¢) — sF cos(26 — 20))]}F" + az(n - I)F_'F"(F' +p)+

[Es —Un+ 1j72(sF + q) - 2s°FF'p + w?r\/TE{Z(n +1)F'M[(1—s) x
£cos(8 — ¢) + s Fsin(8 — ¢)] + sF'N + 2sF[(1— s)F" — 5252 &

©08(26 — 2) + 25%(2 — s) F? F' sin(26 — 2¢)} =0, (16)
where
M(6) = F’sin(@—d))—sF_'cos(e—qS), (17)
N(6) = (F” - s*F?)sin(26 — 2¢) — 2sFF' cos(26 - 2¢), (18)
p(8) = wg[(n + 1)F'M*(8) + sFN(9)], (19)
_ . _vn - ;
q(8) = wrﬁ[(n +1)sFM*(8) — F'N(6)]. (20)

The nonlinear differential equation (16) in conjunction with the boundary conditions
F(r)=o0, F(—w):o, F’(—w):l, (21)

i'(:ir:ls;(g()mlrlrr;ea;elgenvalue problem fot.d.etermining the eigenvalue s and the eigenfun-
o macm:cradf(: ; rst t;vo bounda.r.y conditions stex.n from the traction-free conditions on
e o p AcEs | = +, while the last condition is introduced here arbitrarily for

purpose of normalizing F(6). For w = 0, the nonlinear eigenvalue problem reduces to

that of Mode III HRR- i i
oy ot Mod HRR_ﬁeE’ﬁ:jj. It can be easily shown that the eigenvalue s takes the same
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s=n/(n+1), (22)
With Eq. (22), the first boundary condition of (21) is identically satisfied. Consequently,
the differential equation (16) in conjunction with the remaining two boundary conditions
at § = —x can be regarded as an initial value problem for determining the eigenfunction
#(6). In this analysis, the initial value problem is solved numerically by a fourth-order
Runge-Kutta method. Once s and F(8) have been determined, all other field quantities
can be immediately obtained by using Eqs. (14) and (15), as well as the constitutive
equations (7).

One important feature of the constitutive equations (7) is that they do not destroy the
path-independence of the J-integral (Rice, 1968). This enables to use J as a crack-tip
characterizing paramter, and to relate it to the amplitude factor A appearing in Eq. (13)

by
J = ayoro A", (23)
where I, is a normalization constant. Substitution of Eq. (23) into Eqs. (14) and

(15) and subsequently into the constitutive equations (7) yields the following asymptotic
expressions for the crack-tip field ‘

{] (—Z )‘{ﬁgz%} (24)
T =T\ T Te y 24
T: C!‘YoToI,.T 1—_8(0)
7’ J - ‘-7'(0)
Y% = a7o(m)"“ 76(8) ¢, (25)
Ye doits '7:(9)
a1 J o
w = aror = () S a(6), (26)
where
fTo=—F, fo=nF/(n+1), f =7+ (27)
¥r = ‘Fe"_l[’—'r - P(e)] ) Yo = 7-':_1[7:0 + 4(0)] ’ Ve = (;73 + ‘702)1/21 (28)

@ = (n+ 1), (29)

Note here that the crack-tip field (24)-(26) has exactly the same structure as the HRR-
field for a Mode IIT crack (Hutchinson, 1968; Rice and Rosengren, 1968). The angular
functions and the normalization constant I, differ, however, from those of the HRR-field,
due to the presence of dispersed micro-cracks. Following the usual definition (Tracey,
1976) for the crack opening displacement §,, the following relation between the crack
opening displacement &, and the J-integral holds

_ = 290 2
b=t o= () (30)
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RESULTS

For n=.10 and for ¢ = 0° and 90°, numerical results for the angular functions of the
crack-tip field are presented in Figs. 2 and 3 versus the polar angle 4 and the damage
pa}'ameter w. The maximum value of 7e(#) in the interval -7 < 8 < r is taken to be
unity for the Purpose of normalization, ie., -

max 1",(—7r§0§1r)=1. (31)

Th? contours of constant effective shear stress 7, are also shown in Figs. 2 and 3. Here
. . . L b
a dimensionless polar coordinate R(6) is introduced as

R(O) = (21 (22, = Lone),

(32)
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Figure 2: Angular functions and contours of constant 7, (6 in degrees)
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Figure 5: d,/(2v,) versus w
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on the damage parameter w, while 7, is strongly affected by w. In the presence of damage
and for ¢ = 0°, the maximum T. doesn’t appear on the crack line ahead of the macro-
crack tip. Near the crack faces (4 = +7) and for fixed 0, 7. increases with increasing w for
é = 0°, while this feature is reversed for ¢ = gge°, The influence of on %, %5 and 7, is
stronger for ¢ = (° than for ¢ = gge. The presence of micro-cracks gives rise to increases
in 9 and Ye» and the increases are larger for larger w. For @ = 90°, the position of the
maximum 9, and ¥e 1s 1o longer on the crack line, i.e., § = e, The maximum @ increases
with increasing w. For fixed 6 and w, the increase in w is larger for ¢ = qe than for
® = 90°. The effect of w on w is minimal when the micro-cracks are perpendicular to the
macro-crack, i.e., ¢ = gge. The largest dimension of R(9) is reduced by the presence of
damage, and for a given ¢ the reduction increases as w increases. For the cases considered
here, the maximum reduction of R(8) is attained at ¢ = (°, The shape of the contours of
constant 7, is also altered by the micro-cracks, and it is no longer a circle for w #0.

The dependence of the normalizatjon constant I, on the damage parameter o is shown
in Fig. 4, for several micro-crack orientations ¢. It is seen on Fig. 4 that 7, increases
with increasing w. The increase of I, is strongest for ¢ = 0° and 180° and weakest for
@ = 90°. Figure 5 presents the variation of d./(27) with the damage parameter w, where
d relates the crack opening displacement 4, to the J-integral via Eq. (30). Figure 5
reveals that the presence of distributed micro-cracks increases dn/(27%) and consequently
the crack opening displacement 8, (for a given J). The larger w is, the larger is dn/(27).
The largest magnification in dn/(270) is induced when the micro-cracks are parallel to the
macro-crack, i.e., when § = ge and 180°.
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