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ABSTRACT

Irwin formula was improved by introducing three new elements -

three functions, accounting for the applied stress, crack
length, specimen width and the distance to the crack tip.
Based on the improved formula the more exact
relation is derived for predicting the plastic zone size (PZ2S)
at the crack tip. The errors in the stress distribution and PZS
are analyzed over wide ranges of the relative crack length,
net stress and stress intensity factor. The present analysis
results are compared with the results of numerical analyses
and the actual PZS wvalues, reported in the literature.
KEYWORDS
Crack tip, stress distribution, stress intensity factor,
plastic zone size.

When predicting the fatigue crack growth time under the
operational loading spectrum, one of the dominant parameters
i:s; the plastic zone size (Chang et al., 1981). It is
calcutated using the relation based on Irwin formula for the
description of stress distribution at the crack tip. Koskinen
(1963), Kang and Liu (1972) found out that this relation
has a significant error.

The present paper objective is to improve Irwin formula to
decrease the error in the prediction of stress distribution
and PZS at the crack tip. Irwin formula and the appropriate
relation for PZS have the form (Irwin, 1957; McClintock and
Irwin, 1964)

s

G, = 0, = K/(27x) (1)

K, = (1/77!)(1(/(70,,)2 (2)
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where o , ay are stresses along the crack propagation
and across this direction, respectively; x is the distance
from crack tip; &3 is the constant (=2 at the plane-stress
state, =6 at the plane-strain state) . G,> is the material
vield limit; X, ds PZS along the crack propagation (Fig. 1)

K is the stress intensity factor, calculated by the formula

12
K=o(nl) f(\)

where ¢ is the applied stress;

£(A) is the function accounting the structural element
width effect. In the case of a specimen with
a central crack this function is represented as a polynomial
(Brown and Strawley, 1967)

2 3
f(A)=1+0.1281-0.288A +1.525A

A=21/B is the relative crack length;
21 is the crack length; B is the specimen width.

[rwin formula development
G contains the following: three
L_J 4 ‘ ‘ ‘ ‘ functions, depending on the
applied stress g and the speci-

d men geometry paramcters 21, =,

:‘ B) are inciuded into the right
\ hand side of equation (1). These
functions are structurally simi-
CL‘ lar to those, previously used by
the present author to improve
Kirsch formula describing the

stress distribution in the spe
cimen with a central holtle (Dot
senko and Polyakov, 1988) . In
the works on fracture mechanics
(Knott, 1979) it was noted that

the initial solution tfor

B stresses in a specimen with a

central crack was casted as

series however, for practical

SITTT77777 7777 ipplications only the first,
singular term was left, that

Fig. 1. The PZs analysis stands in the ripght hand side
scheme for the spe - of the formula (1), and the

cimen with a crack. remainder §is omitted. Therefore

the introduced functions really compensate the omitted terms.
'he improved formula has the form

1 g 2 T2
o 5, - K/(2nx) 0 0a "OF(N) [ (X/B)+8X (x/1) ] (3)

x v

where
= 6/(1-X)

et

It follows from (3) that in order to calculate the stresses
at a specimen point located at a distance x from the crack tip,
it is necessary to sum up the singular term with the stress
Jner and to subtract two functions depending on o, 21, x and B.
Specific forms of these functions were determined so as to
minimize the error in the stress distribution around the
crack tip.

For simplicity the formula (1) will be symbolized by
(1) (Irwin formula), and the formula (3) by (ID) (Irwin
formula improved by the author) . The error was assessed
by comparing the area under the predicted stress distribution
curve with the area under the stress distribution curve in the
gross section. For the error the following equation was used
B 21 ) 52
A = 1 - IZqudx / 6B ] (4)

o

Substituting (1) and (3) into (4) we get

1L/2
A (1) = 1-2f(M)[(A/2)(1-N)] (5)
1/ 2 a/a
A(ID)={[(XA/2)(1-1)] “(1-A)/8-(8/3)[A(1-A)] PE(A) (6)
where A(I) and A(ID) are the errors in the stress
distributions by the formulae (1) and (ID), respectively.

The formula (ID) is derived for the plane strain at the crack
tip. At the plane-stress state the stresses at the crack tip
are less than those under the plane strain (Villareal et al,
1975). This decrease can be taken into account by multiplying
the right hand side of the formula (3) by the function

Pp(A) = 1/(1+0.054sin2mA) .

Using Mises criterion for plastic zone boundary definition,
we yet from formulae (1) and (3):
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Ko (1) = (1/vm) (K/oy )"

(7)

X2(ID) = (1/vn)(K/[(o°,/¢(A)) %

T Tnee Tt (xz e (x2/1) 0 7)) (8)
where X, (I) and X2(ID)

- are the PZs
using the formulae (I) and (ID), respectlvel;alues' CRA NI b
The relation (8) allows
us t

15 il the stre.. djagra.o get the pgzs value at the crack

: de
Malntains jtg location about the scribed by the

cause the diagram to dis

place (Fig. 1
When using the formula (I) the : : s ke
is assumed (McClintock and Irwin, 1964 ;

increase,

Let"s designate the symbo] 3x
2

f
Then according to tha Formule” | Or the increment ip the pzs,

ID) the Pzs g

X, (ID)=x2
)=x2(ID)+ax fgj

where 8x_=0 if 0 e <O

P17

- 2 2
axv—axp-(l_[l*(an-g‘cpx) /(UO‘—GDl)z]‘/ } if o <a <o .
»1 net 045, ;

9., = material bproportional limit,;
3X,. = the limit increment of PZs

defined as a difference: oceuring at

%nee=0%,, and

3x = x__-x-

Pm Pm Pm

Xom = PZS  limjit correspo

R ponding  to the equality
¥om = (8-2]_)/2 = BO/ZGO.;

21, = limit crack length co

%nes=0oa, i.e. ¥ fresponding to the equality

21m=B(1—o/a°_)

Xom = PZS value calculated by (8) at the crack length of 21

512

formula (3)
crack tip, At  high applied
ormations aroung the crack tip

Dividing both sides of the formulae (7) and (9) by the half of
the net section width, (B - 21)/2, we get the formula for the
relative PZS values:

Kl =i

o(I) = 2x_(I)/(B-21)
(ID)= 2x_(ID)/(B-21) | (R8

B

The curves of the error A as a function of the relative crack
length, the formulae (5) and (6), are shown in Fig. 2. One can
see that the calculation error corresponding to the formula
(ID) does not exceed 4%, and that corresponding to the
formula (I) is much greater, by a factor of (5 - 20).

The PZs was computed for flat specimens of the 2024-T351
aluminium alloy, similar to those studied by Kang and Liu

(1972). Material properties and specimen size are:
0,,365 MPa, 951 = 231 MPa, B = 100 - 2000 mm, thickness
of 2 - 6 mm, Y = 2. The calculation results are shown
in Figs. 3 and 4. At the stress L L. the plastic
zZone propagates through the net section and the PZS must
be a half of the net section

width, i.e. x,=(B-21)/2. A

Therefore at the change of 1.0
the ratio o,_,./06,, in the
range of 0 to 1 the relative

PZ value defined by the 0.8
formulae (10) should change

from 0 to 1. The value X, (1)

does not satisfy this 0.6 NCA D

condition. Fig.3 shows the

dependence of X_(ID) and \\(\*

- P

X, (I) upon Crnac/00n at 0.4 \\\\

different A; it is seen that

when o__ /0., changes from | \\\\\

0 to 1 the value of X, (ID) G2~ -

changes from 0 to 1, and the A(1D)

value of X,(I) 1lies in the 6.0 L —

range of 0 to 0.18 (if PZS €0 0I 02 03 0.4 5 0.6

is assumed to be 2x (1),

then the value of X_(I) 4

changes from 0 to 0.36). Fig. 2. The relationship bet-
ween the stress ana-

The family of curves X,(ID) lysis error and the

represented in Fig. 3 is relative crack length.

universal (as it remains
unchanged when the specimen width varies) and seems to be
independent of the kind of loading. In this figure the points

show the values of Xy obtained by Koskinen (1963)
through the numerical method for predicting PZS in
specimens with cracks under the longitudinal shear.
The points coincide with the curves corresponding
to the formula (ID) and don"t with the curves
plotted according to the formula (I).
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The typical curve
shown 1in Fig. 4
PZS and the Stress intensity
relative Stresses

plotted as a single s
formula (ID) is

lines and curves . The straight lines on the plot
are common to the Specimens of different widths, They
present the PZs at Stresses Onae € O_,. The curves
correspond to the Stress leve] Onee > O_.,, each is
related to a specimen of a specific width . At the fixed
values of g and Tnae > O, the narrower the specimen,
the less the PZS value. The straight lines in the
right-hand side of the plot do bend Up, and the wider the
specimen, the larger is g value, at which the bend begins (for

slnpllcity, the bend

level 7 = 0.1).

I.0

0.8

Fig. 3. The relative Pzs vys.

that reflects

G=0/0,, .

(for the specimen of width B:ZOOOmm) is

the relationship between the
factor plotted for different
PZS by the formula (I) is
traight dashed line, and the one by the
family of solid straight

in Fig. 4 js shown only for the stress

Y

(D1 | 2

P ip(ID) 9 6

The actual PZS values obtained

plotted as the points.

the formula (ID)

formula (I). The Pzs va

the ratio 0 hnae/0

0.05( 0.1]0.25| 0.5

Cjnet/ S,

oz

by Kung and Liu (1972) are
They correlate wel] with the results by

(at 8=0.27) and contradict to results from the

lengths (21=0.01 mm and

two dash-and-dot
length 21 (and
the larger the

lines.
the

For small cracks the
several decimal orders .

The
at ¢ = 0.027, i.e. at very

21=1 mm)

lues cnrresponding to two fixed crack
are  shown in the plot by

One can see that the less the crack

Breater
difference

ratio
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the applied Stress ),
between X, (ID) and X 6T 5
x,(ID) / X, (1) can reach
equality X, (ID) - X, (1) holds
low levels of applied stresses .
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Fig.4 The PZS vs. stress intensity factor.

It can be concluded that the present development to ;r:;:
formula, alongside with the increase in the accuracy o ¢
plastic =zone size prediction allows us to extend the rang: os
applied stresses, crack lengths and stress intensity fac o:e
where this parameter can be used for the crack , growth rak_
analysis and the solution of other problems on the crac
resistance of materials and structural elements.
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