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ABSTRACT

In the reaserchwork the thermostressed state of the body
with inclusions which can be both thin and limitedsizes 1is
investigated Solution of the problem 1is reduced to the
system of Prandl singular integral differential equations
(PSIDE). In the case of circular disk and straight thin
inclusion the system is solved numerically by the method of
mechanical quadratures. Numerical analysis of stress
intensity factors (SIF) is presented.
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INTRODUCTION

Suppose a disk and thin inclusion of arbitrary form are
soldered in elastic 1sotropic infinite plate. The plate 1is
influenced by uniformally distributed & infinity stretching
forces N and N which act 1in reciprocally perpendicular
directions and force N forms together with axis OX angle gB.
Thermal flow g and temperature TO are given &t 1infinity On

the material boundary line the conditions of ideal mechanical

and thermal contact are observed It is supposed that plate
bases are thermoisolated. Let L be the line which 1limits the
disk, L be the middle line of the thin inclusion (L 1s the
contour of Lyapunov type ) We choose the Cartesian
coordinates XOY originating in any point of the disk Let
quantities assotiated with the disk be denoted by index 'O’
and quantities assotiated with the thin inclusion be denoted
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Oy index ' Fig. 1

Fig. 1. Plate general view,

HEAT TRANSFER PROBLEM

To determine tem i
erat ; .
are used (Prusog, 19?2? field T0e,y) the following equations

T(x;y)=2ReFo(z);

aT
35 = F(2)e'% F(z)e-t«
e (1)
75 =l F(z)e'%: Flz)e '® }; ;
_ zel
Where =F" j F 4
F(z) Fo(z) , Z=X+1y; Fo(z) is holomorphic function;

@ ésaigﬁlsogsgyseg (0):¢ and tangent to L in the point Z, s 1is
) _ ate, n is the normal t L i int’
5, _ ' o) in the
(l§l€§el?t§ 00951derat19n the thinness of the iggiggigﬁ and
Ollowing equations are obtained.

aT*  aT7" aT* -
== — 97 _ ) aT = s
ER 33 2h pk(u), ﬁ = ﬁ = —2h gk(u), U.ELI (2)
3T* a7~ . -
35 * 33 = 2[Fk(u)e’a+ Fk(u)e“a I,
3T* a1~ . .
an *oam = 2i[F (u)el%. Fo(ue™ '™ ).
where S
(W)= p*/ ta - -tx .
gk. ) F (we'®: F (we ™! Pou)= [F(u)elt® F'(u)e ~1%);
F o(u) is unknown functj i et - ‘
lon. Sings "+ and "=  tg values of

following way:
F(z)=F (z)+F_(z)+C
1 2 o

where F1(z) 1s pilecewise holomorphic function with breakline

Ll; F (z) is piecewise holomorphic function with breakline L2;

N wl(t)dt o=l q8—1¢
Y2t T R 2 Yoo 2k
L

kK is coeffitient of thermal conductivity.

On the material boundary line the following conditions of ideal
temperature contact are observed

3T _ ( aT _ 8T aT
e [ 35 J 5 Tl ~kl[ T ]‘ (4)
Taking into consideration (4) and (2) boundary problem for
determinating F(z) is obtained.
[ F (we'% F e ' I=2hg’ (wn i
[ Fl(u>e‘a~ 1Zu)e"a I=2hp’ (u) ;

g'(u)=g;(u) = g;(u) ; p'(u)=p;(u) = p;(u) ;

(5)

where

g (w= [F, we'*+ Fo e *le -

po(w= [F, ue'*. P (e '¥lei o
F2k(2)=F2(z)+CO ; Fk(z)=Fk(z)—£F2k(z) :

€ = min(1;n"') . n =k /K
1 1 1

On solving (5) we obtain

ng’'(t)-ip’(t)
F1<z>—2\}t fe‘“’”“ N S T (6)
t—z ,

L
Let us present the complex potential Fo(z) for the disk in the

following way:
F(z) =F (z) + F (z) + C
o 2 1 o

Let us present wl(t) in the following way:

P, L bd=—ip(p g eIt

Then the first equation (4) is satisfied automatically,and
from the second equation (4) the following for finding r(t) is

obtained:
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r(t)e—ia(t)
J dt + F (u)]exa(u):l~
[ 10
L
- (k_+k)r(t) o, (ueL);

Taking igto consideration (4) and satisfying (3) following
system of equations for f inding wunknown function F (u) is

obtained:

i(k—ko)Im[(

S

(7)

Il

n nlg’(t)-ip’(t)
= Re[ — dt - (l1-e)/n"
t—u

r(t)e 1®(e)
'Re[( J —_  dt + Co]e‘a(“’]=F (We'*+FTwe™'* LeL
b k K , 1

(8)

L
h n.g’'(t)-ip’(t)
= Im[ ——————— dt - (l-en )/n"
t-u !
L
1

r{(t)etElE)

'Im[( J _—  dt + CO]e‘a(")]z—n ilF (u)e'®-= We 1]

t—u 1 Kk k
L

So the final system of equations consists of (7), (8) and the
conditions of the heat flow being equal to zero and the
temperature being unchangeable on 1ts going round the
inclusion contour:

J g’ (t)dt=0, J p’ (t)dt=0;

L L
1 1

The temperature complex potential can be obtained from Fk(z).

THERMOELASTICITY PROBLEM

Let us introduce complex potentials &(z) and ¥(z) On any
curve L the following equations are observed (Prusov, 1975)

N+iT=®(t) + F(E) + g%[t$TT€) + WTE)];
(1)

Zeuriv)=ka(t) - FTE) - g%[ca*va + WTE)] + HE(L);

where ¥(t) 1S the complex thermal potential.
On the material boundary line the following conditions of
ideal mechanical contact are observed.
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W o R . )I 8 S
[N+1T] = (N+1T]1 ; gf[u+1v] _EE(u+1V]1 : (2)

Let us present the complex potentials &(t) and ¥(t) in the
following way:
®(t) = ¢1<t)+¢2(t)+r i w(t)=w1(t>+w2<t)+r' 5

R ,__ 1 _ -21iB
where r = Z(N1+N2) s = §(N1 Nz)e

¢l(t), Wl(t) and Qa(t), Wz(t) are plecewlse
holomorphic functions with the breaklines L1 and L.
Therefore we can present ¢2(t) and Wa(t) in the following

way- 1 Q(t)dt
QZ(Z)=EHT J . y

L

1
‘I’Z(Z)=—m[ J —_

L L

(3)

Q(Et)dE TQ(t)dt
+
J (t-z)2

Where Q(t) is unknown function (Theocaris and
Toakimidis,1977).Then the first equation (2) 1is satisfied
automatically of the line L The following equation for finding
Q(t) is obtained on satisfying the second condition (2) on the

L.
b QU(E)dE Q(t)dt
aQ(U) + m f —‘t‘_ﬁ a m J ————t_u +
L L (4
o 9t QTE)dt (T-1Q(t)dt
=C — —— —— =R(u) , uel
2ni at J t-u [ (t-u)?
L L
1 uo ‘J-OK_‘J-KO uo
where a—z[xo+l + i (x+1)] : b=———H:—— ., c=1- T

R(u)=[—x°+ §°K]¢ (W +{ Sﬂ = 1]{ T W+

— [T i~
+ g%[u$loiu) + Ilolu)]} + E°HW(u)-HOWO(u)

1

Suppose complex potentials ¢;(u); %:(u) and Wok(u) determine
thermostressed state in the thin inclusion, then

+ -
[N+iT] = {N+1T] =21hK;(t)
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3 (5)

.

. 3 § B
5—[u+1v] - Ef[u+lv] =&E[M;(t) + W‘k(t)J
+ ' ’

3
[N+iTJ + [N+1T]—=2[¢(t) + 5:?2) + e‘a‘“R;<t>J (6)

+
3

a3 . -
5{[U+1V] N [u+' J 1 - = 21 %
FE|uriv s K 2 (t)-2 (t)-e™2 “Rk<t)+Hwok(t)]
where

ROO=tFTTEI+TCE); K (£)=2_ 4" 94"
)i Ki(e)=L @ (t)+2 ¢k<t>+e‘2‘“g§ R™(t);

M_ e a_ - a - oy
1(t) k.35 Qk(t)—gg Qk(t)—e 2t @
S 1s the arch coordinate,
3 (Ll _ »* _ - . - -
K w) e (w) we_ (u), Rk(u)=Rk(u)—wR2k(u);

Taking into consideration (2) from (5)

obtained.On solving which we obtain: boundary problem is

£ (t)dt TE
¢1(z)=h7! =t ;Rl(z)=—h7[ J (B { gt f,(t)dE _
. == (E-2)2 -z |
1 L | 4

where L 1

f (t)=K’ 1
L K (t)+n1M (t) fz(t)=~n K’(t)+n1M’(t)

K (t)=K;(t)—K;(t); M'(t)=M{(t)*M;(t); ¥=1/((1+k) 1)

K;<t>=[6_ . 3 e _ ;
as¢2k(t)+5§¢2k(t)+e 2ra §§R2k(t)Jw

M;(t)=[ P 8 g* -21@ 9
13525, () 750, (t)-e §§R2k(t)]w 2

¢ (z)=¢ I
. 2(z)+1, Wak(z)=W2(z)+F; w=min(1;n;1); n =u/u
1 1

Ullkllown ful’lct 10 5 and f are b
ns f ar el O
( ) ( ) ng f und from the

£ ) it
ollowing €quations which are obtained from (6)

i £ (t
Qk(u)+5k(u)+e ziaRk<u)—2h7Re[ J  (0)de ]+e'21ahi'
=11

15
1

412

— - v ! a v
BSRk(t) ; wok(t):gg %ok(t);

tT-u

' f (%) f (t)dt i
'I J —t  ud® - { 2 =(l—w)[¢, (u)+3®_ (u)+e R (u)]
2 2k 2k 2k

: L L
1 1

. — . £ (t)dt T, (E)dE
n [n 2" (t)-8 (t)-e *'°R (t)]—xhw[ z +th -
5 4 1 k k k

t—u tT-u
L L (7)
T £_(t)dE
_e ey, _ 1 " udE e [ 2 |=(k k. n.we_ (u)-
(E~G)2 E‘-E o 1 1 2k
L Ly

—[ 62k(u)+e‘2‘“R2k(u)](1—wn1)—1’11n1 4

where 7, is the angle inclusion turn as arigid whole.

Conditions of contour displacement unchangeability, of
equality to zero of main vector and main momentumon their
going round the inclusi on contour have the form:

[K'(u)duzo 2 [M’(u)du=0 : Im[ﬁ K’ (u)du=0 ; (8)

L L L
1 1 1
30 (4),(7) and (8) form the final system for the determination

unknown functions K(u), M(u) and Q(u)
In particular cases, mentioned 1in literature cases can be
obtained.(Grilitskij, Opanasovich and Tysovskij,b1982)

THE CASE OF CIRCULAR DISK AND
STRAIGHT THIN INCLUSION

In this case the problems of linear conjugation on circular
line of material boundary can be solved analdlucally. And the

final system of equations can be rewritten:
1

4 'wr(t)dt
1 % J Lij(t,x)u;(t)dt ]=pj(x)

Z [axjul(x)+bij{ =

i=1

=1 =1

where axj, be' L;J(t'X)' pj(x) are known constants and
functions, ij(tYX) are regular functions.

This system is solved numerically by the mechanic quadrature
method.Values SIF obtained 1n boundary cases are 1in good
agreement with those Kknown in literature (Grilitskij,

Opanasovich and Tysovskij, 1982).
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Calculation was made with the following values of input
parameteres: h/1=0.1, R/1=2, z°/1=4, KO=K1=K Fig. 2.

Where 1 and 2 marks known in literature case, 3 and 4 marks
unknown in literature case when the plate is influenced by
force Ni and temperature T = 5. 1 and 3 determine the

. o
undimensional SIF (which are marked by K‘) at the right tip
of the inclusion, 2 and 4 determine the SIF at the left tip
of the inclusion. K=u/u1.

Undimensional SIF Kl

equals SIF / (N141 )

= J -0,2

Fig. 2. Defendence Ki of K=u/u1
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