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ABSTRACT

The path-independent ener, curvilinear integrals for non-
linear elastic plates and cylindrical shells subjected to
large bending and extensional deformation are constructed in
this paper. The contour integrals obtained are similar to the
Eshel y~Chereganov-Rice integrals and define the resistance
force caused by advance of a through crack or other defect.
New specialized form of the equations of general nonlinear
theory of shells, found by author, is used for constructing
this Integrals. With the invariant integrals, the energy
criteria of through crack propagation in  thin-walled
structures were formulated.
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GENERAL RETLATIONS IN NONLINEAR THEORY OF SHELTS
Let the radius-vector r(g', o?%) denote the positions of
points of the median surface, O,» 0f a thin-walled shell in

the undeformed state, where % are the curvilinear coordinates
On g,. An unit normal to 0, is denoted by n, and vectors of
principal and reciprocal bases are denoted by r, and rP,

respectively, where r, = or/eq%, r. rP = 62 ., - n - @
@ B =1,2). Tet g5 =r,- rgand s , = - r_- on/aeP be the

coefficients of first and second quadratic forms of the
surface 0, . The median surface, 2,, 0f a deformed shell has

the radius-vector R(e*, ¢*) , the unit normal N(<*, %“), and
the base vectors R_(2', §°) = aR/ag™ and RP,  where

RP- N =0, RP-R = oF (8% is the Rronecker symbol). The
coefficients of the first and second quadratic forms of the
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surface Zo will be denoted by G = R R
_ . 8 ap a B ’
Baﬁ Ra oN/ag¥,

The equilibrium equations of shell have the
%8ggf—moment form (Koiter, 1966; Pietraszkievicz, 197%?léggg€§

A G sl SIS BE v n*® 14P = 0
LA MRy Baﬁ(T“B -85 M%)y 1+ 5 -0 (1)

'= a _ -af
£ =R, + N, BF=cp 6,50°T = 87

Bs °* ]

Here, 7*P and »*P gre the components of s i

» : metric

membrane forces and bending goments; vaymis the t??iggf 8%
c?var?ant derivative in Gap—metric; f 1is the vector of a load
distributed over 20.

For elastic shell. the followi i i i
1951 Zubov, 1982 ) wing relations are valid (Galimov,

T](G/g)vz 7R _ 6W/aEaB , n(g/s)t/z HeB _ W/Ma

g
= 1 _ —
EaB = .‘.,(GmB gaﬂ) . aﬁﬁ = BGB - ba.p , (2)
G = G = - 1 a =
Capl 67 Isapl M= { 2 a= g '

where w 1s the specific elastic energy of shell (per
unit
area of o ), €ap and %, aTe the components of tangential and

bending strains, respectively.

The force boundary conditio
as follows (Zubov’ jogp) Ons 8t the shell edge may be written

B B
Vol m (1% - 28, 1*0) =e(P -8 1% (B=1,2)
Y G/g mama)fa'p = emaLa
Y G/g m.meMa'p + (aig[f 6/8 e 2t%n

aGa.amB] = 3)
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In the equations (3) m=m r® and t = tPr_ are the unit
vectors of normal and tangent to contour 7y, bounding the shell
surface, o_, in undeformed state. After deforming, the curve

0’

7, 1s transformed into the contour I', bounding the shell
surface, % , in deformed state. The vectors 1 and L x N are

the densities of an external force and an_ external moment,
respectively,distributed along the contour I'/; ds and ds are
the arc elements of v, and T, respectively.

Let us consider in three-dimensional space a tensor _#(q',q°)
of an arbitrary rank and introduce for it the following
differential operations

grad & = r%o8/90* , div & = r%- o9/ (4)
Crad ¢ = R%eo8/9g"

Define the unsymmetric tensors of forces and moments for an
elastic shell as follows ( Zubov, 1982 )

D =7Y6/a (TP - ng)raens (5)

H=76/g Hapraekp

Usin% the equations (2), (5), we can establish the following
relations

D =aw/oF , H = aw/dK (6)
F=gradR =r%R_, K = grad N

The equilibrium equations (1) are reduced to the following
simple form (Zubov, 1989)

div[D + (div H)-(Grad r)N] + £ =0, £ =7c6/s f ()
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The tensors p and H being introduced b Zubov ar
g 188
analogous to Plola1 st§ess tensor in gonlinear (theggy o%

The boundary c
written as fol

m-[D + (div H)- (Grad r) N] + a(h'mse“n)/as =

1 + a(:_se—xn)/as, H =L (8)

Hms = m*H-v 5 Hmp. = m-H-“ 5 L = e[_’, 1 el'

L =L

H-“ + Lp"t

Here, u is g normal to the boundary ' of the surface 3

o _ s . . b

(N = 0), ¢ ig an unit tangential vector to the contour r,1
o

and L x N are the intensities (per unit length of
th
7o) of force and moment loads d?stributed gégr shelleedggntour

INVARIANT cONTOUR INTEGRAIS
Let us Suppose that external Surface load, f, acti 1
s . £, upo
surfai? aresa of 0, consists of two parts: n§ E ntunli
2(2",9°)N, where f = const is an uniform dead load: pn 153 a

follower normal loag. Fop Nonlinear elastic plate, i
% 18 & plane, consider the following contoun integral * ‘o0

I = <£ [m(w - f_°R) - m-(D-FT + H-KT)] ds (9)
.

The rollowing theorem is valig: the integral 1 is
) : e
Zero for any closed plecewise-smooth con%gur T bound%ﬁzl tﬁg

domain o, in which plate material is homoge

’ g t i neous and tensors f
an t are continuous differentia]l functiogé of the coordinates
Py Q.

ggi?glfggsdivergence theorem, the integral (9) is transformed
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?gs;tions (3) in terms of tensors b ang H are

T = f [grad Wo— £ -FT - div(D-F" + u-x')] do (10)
g

Taking into account the equalities
N‘F*" =0, K® = - (Grad r)-(grad F)-N (11)

K-div H = F-div[(div H)- (Crad r)N]

T

and relation: grad w = p'..grad F' + H--gr
resulting from (6) and Plane homogeneity, we obtain

I=- I {div[D + (a1 H)- (Gred ron] + ro}ox-’do (12)

g

instead of (10). From the e%uilibrium e%uations 7);. the

(T)s
relation (12) and first equality in (11), it follows that

I = j PN-F'do = 0
g
which proves the theorem.

If theorem conditions are failed in some domain o < g, the
integral I along the contour which encloses o does not vanish
in general. In this case, value of the integral is independent
of the choice of closed contour I enclosing o .. The su omain
g may  include nonhomogeneities, inclusions, holes,
dislocations.disclinations. singular points of tensor fields
F, K, and other defects. The vector integral I is similar to
Ishelby integral (Eshelby, 1956) in three-dimensiong] theory
of elasticity.

Another form of I-integral, resulting from (2) and (5), is of
some interest

T=fm, o - £ RIS = (aw/os o) s 2(on/om )8, [FTas (13)
Y

Applying the equality
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m-H-K" = [(o(H__ e'N)/os]-F" - Hm“N-aFT/ap.,

(08/0u = p-Grad &),

we obtain another representation of the invariant integral
nonlinear plate theory (Zubov, 1989)

f = § [nOr - £,°R) = [mD + o _e™N)/0s]F" + (14)
Y
T
" N oF /ap] ds

Let us suppose that the plate contains an infinitely thin
crack with the edges to be parallel to an unit vector h. The
crack borders are load-free, 1.e., the conditions (8) are
fulfilled on those when 1 =L = 0. In this case, basing on the

theorem, the expression (14) and the equality N-F" = 0, it is
proved that the integral J = h-I have the same value for all
contours enclosing one of the crack ends and having the begin
and the end at the different borders of a cut. For integral J
to be independent on the choice of contour it's sufficient for
material to be homogeneous onl{ in crack direction. Moreover,
J-integral invariance occurs Y ace not only for plane plate
out also for cylindrical shell of arbitrary cross-section if
the crack is parallel to the cKlinder generator. This is valid
also for cutout of finite width with parallel borders. The
integral J is similar to Cherepanov-Rice integral (Cherepanov,
1967, Rice, 1968).

Suggesting that R =r + u in (14), where u'is a vector of
displacements of the median surface ¢ , and taking into

agcggnt the condition of equilibrium of an arbitrary part of a
shell:

ffdo+§ [n D + (aiv #)- (Grad roN] +

a
o Y

ok ™ Wy/os |as = 0,

resulting from (8) in the absence of a follower load (¢ = 0),
we obtain the following representation of the energy integral
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|mtv - £,-u) = [mD + m (Grad u)™- (div HN +
(15)

-
1]
< -

a(Hmse"u)/as]-(grad w)’ o+ HM“N°a(grad u)'/au] ds

The expression (15) for the invariant contour integral would
be apx?opriate for use in the case of small deformations,
spec1§ically in geometric-linear theory of plates and shells.

CRITERION OF CRACK PROPAGATION

Let the boundary 7, of a plateor a shell consist of two
parts: 7, =71, Y 1,- The part 7, 1is fixed or hinged; 7, 1is

under dead force load. Then the potential energy of an elastic
shell, with o = 0, is given by

I=fw-¢, -wdo- [ 1-uds

G‘O 'Tz

It may be proved that the energz variation conditioned by
crack propagation by a value of can be written as

dl = - Jda (16)

Since the invariant energy integral, 7, in nonlinear theory of
shells chasracterizes, in accordance with (16), the energy
release when the crack grows, this integral may be used as &
criterion of crack propagation in plaies and shells under
bending, as in the case of plane stress state (Broberg, 1971).
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