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ABSTRACT

The paper contains a systematic formulation of the theory pur-
posed to the description of deformation and fracture of an
anisotropic damaged media regarded as two-phase one. The
atress—-strain relations are constructed and damage evolution
equations which takes into account the possibility of inter-
phase mass transfer are derived. Two criteria of fracture are
formulated on the basis of energetic approach. The first of
them coincides with Lemaitre's failure criterion in the case
of isotropic damage and corresponds to the hypothesis of the
total specific deformation energy. The second one corresponds
to the hypothesis of the specific energy of the shape changing
for virgin (undamaged) materials.
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TWO-PHASE DAMAGED MEDIA AND DAMAGE MEASURES

Let us consider the actual configuration ﬁa of the body ¥,

containing spatially distributed microdefects. Let us also
adopt that there exists a representative volume of % — an ele-
mentary sphere dV that is quite big to contain great number of
internal imperfections, but too small to provide the homoge-—
neity of overall stress-strain state. We will consider as im—
imrfections not only the microdefects embedded in matrix, but
almo, following Lemaitre(1985), those parts of matrix materi-
al. that have lost their load carrying capacity due to concen-
tration of microstress, interaction gf neighboring defects and

#0 on. Therefore, the total volume av” of internal imperfec—
tions in sphere dV consists not only of hollows, but also a

certain mass dm” possessing some defect phase density pD.
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averaged through «° Tha remainder of the matrix material

(carrying phase) contains sSome mass dm‘:dm.—dm.D with density

p’. The total mass am of the representative volume aV Rosses~
ses density p averaged through aV. The carrying phase dV. will

be considered as homogeneous, isotropic and satisfying to Ho-

oke's law in elastic range. It is easil¥ to derive the relati-
on batwaen phas e whole medla:

g9 Aaspnsltiss and that of
o = 9 s (1-9)0° (1)

~
-
where 9=aV .aqv may be regarded here as volume damage measure.
In initial configuration-%; of body ¥ his representative volu—

me dVo contains both the carrying phase dV; with mass dm:, and

the defect phase dV: with mass dm:. It should be noticed that

althougn mass conservation law 1s valid tor whole damaged me-
d1a, 1t obviousiy not take place ftor each phase separately.
buring aerormacion ProcCess some aaditional parts ot the mat-
r1lX material may 1ose their carrying capacity due to deve-
lopment or stress concentration zones and so on. So 1n the
TR T < » -
actual configuration the phase masses are am =dm°—dmt and
(=] (=] . )
dm :dmb'dmt’ where c:lm.l is the part of mass being transformed

from carrying state to defect one. For simplicity we shall
call this transformation as '"mass Eransfer”. Similag}y. let us

adopt for current pPhase volumes dV‘:dV-—th and dV°=dV°odV?.

The first items at right-hand parts of those equalities, that
may be called, analogically to Nigmatoulin(1978) as "exter-
nal" current phase volumes, are satisfying mass conservation

law for each Separate phase, i.e. dmZ:p'dV‘, de:deVn. Ac-

cordingly, the mass transfer value can be found with heip gf

the second items: dm1=p*dvt=deV?. The total volume dV=dV‘+dVD
can be presented now as

vV = v +

av (2)

signify
Cross—sectional area of defects in some central section dS“ of
the representative volume &V, that defines by the normal n.
According to Lemaitre(1985), this area includes not only
Cross—-section of microholes and microcracks, but also depends

upon stress concentration and interaction between nearest de-—
fects. The measure of damage Dn in this section may be defined

as corrected by abovementioned factors effective load carry-—

Planar Damage Measures and Damage Tensor. Let d$:

ik At

ing area ds”-as -as”, related to central cross—sectional area
* n n ) ) _
dS i.e. Q1 ;;5*/d5 . If spatial distribution of internal im
n’ U n n n

1 1 1 there exist the sections de-
perfections is orthotropic one, =
termined by normals nP p=1,2,3, where damage measure Qn rea

ches it's main values . Those three quantities we shall call
P .

as planar damage measures. The symmetric second-rank damage

tensor w may be defined by usual way

w=FrQnn (3)

- Q
We will postulate the relation between volume & and planar 5

measures in the form

= (4)
9 =7 Q‘an3
From a geometrical point of View,@vls the relativ;s VO{TT67 2f
some ellipsoid possesses main sectional areas {Q . g=¥ 2,3,

in the representative volume aVv

Two Kinds of Phase Deformation Rctes._As Nigmatoulin(197g) SE;
inted out, deformation in each phase is ca:s:d not gnlgy Yboth
1 - t are etermine
splacements at outer bounds, tha
g;tgrnal field of rates and phase material propertles. b:E
also by displacement of interphase surface?tlnilde th:ragzgg;
: 1 1 1 su of mass .
sentative volume being explained as a re i e
Following the mentioned work, we will introduce for each m—th

Cam) d -
phase both external deformation rate tensor & and real e
g i, 2o where =™ takes into
formation rate tensor g =g +€, . e :
[t ; = e
account displacement of the substance oi m—=th pnhase at ,Fb,
3urface oI pnases sepatrativli. ihelrelvrle, Ludgolhei wilh Leple

e - 3 5 overaill
sentative volume change rate, Qv =adV trcer, where « 15 \;\e/el"na«
deformation tensor, we can similariy preseﬂt tor sepcr? p 3
se the rate of change of the ‘'external phase volume

W av trce™> or av®=avZtrce”> by using external deformation
}ate tensor. Now by time differentiating of (2)_ gnd by ?51ng
the relations between volumes, masses and densities, we foun

- PR AO
trCed = 9trce D1 -8>trc2%> (5)

where . - . . . o
5 i . i i )
LrCz‘)=trC£ )—dml/dm s trCe Jd=trle J~dmt,dm

It is clear that we can write £ =g +& for carrying phaae and
3 Y ly for defect one. Here &« es du to mass a
imila arils e transfer

and should be represented by an appropriate way. Let us assume

85




the rate of ma

ss tr ansfer dm to be roportion e

P P 1 al both to th
ry g p lffel’ellce betw ==

mass of car in hase dm and the d een efiectl
ve and nominal mean sty esses, 1i.e. dm =3Co -0 JOdm n. wher e n

ant val Y.: i
cons ue it 1 f 18cosi st

1S a t w h d mension o v (o} t and ress

tensors o and o
- SO as their mean ; :
later. Then following representatio;alues' will be introduced

& = & - = —(Q‘_O,)/n 7)

111 Satais o e ir om eqg 1tion
fY b th th firs fr S. (6) and prep iti
W t T 6 os ons

made above. T 1
e t should be noticed that in absence of the dama-
S ©9 =92 mass transfer is vanish and PR

=0

DAMAGE EvoLUTION

-
The relatio
ns between phase d itq
volumes . = ensities ang "
were rformulated above; as it follow frggtsggal phase
m, . equa-

lities b’:~p‘:r(é*> éD put ceB>

il < 2. p=m r<e D are v 1

(5$a;:§e:gi Sltferentlatxng eg. (1) by :i;g ::; ;;fh iy
13 O result, w 1 NP
ot Homes e " € can easy derive evolution law ?or

; g L ,'\. . .
S = -Strce-2 > = C1-9trce-295 (8)

which rises fro
M mass conservat i
260 L = : > 1on law for whol i
differen?ié?‘mlnd interphase mass transfer. Fro; dg?;g:d :edla
ing eq. (4) and equating the result to (8) g?cgé

9]
s ~ ™ s
- = ';’Lx(c : o> 2 (1-'3) 3 ~D
ZQ. B trie-E. (9)

Developj 5
¢ angl;gnige ?Sproach pProposed earlier by the authors (F
from sl (8)' 87) for porous media, we shall use the f?de-
¢ and (9) henceforth. Owing to the form of t;rst
eir

right-hand sides ;j
. 1t ma b -
tion law takes the fox—my € presumed that damage tensor evolu-

w = PCoB*> (10)
where » |
1s fourth-rank tensor depending on w The most
. common

epresentation of s i
uch tensor 1 1
partlcu]arly' oo Bons o agor 1s described in many works and,

Py

<~ = alIl+a + € w ¢
LI+ 2,}- b‘I »f)z uINtba‘“HoC‘m(«»CzI(w'w)»

~
+C Cw-woI Cw - -
5 04(:‘ W*b‘ wCw w)o-? (w'w)woe('w'w)(w'w)A (11)

FORE

T

Here o’,az,...,bz.e are some coefficients that may depend of

main invariants of w; I,#% are second-rank and fourth-rank unit

tensors,accordingly:
W -l S S D/4,
T Ol B, B bl O I O P

~
and % has similar form, if w are replaced by W ow .
mn ms8 sSn

Because Q =wx‘n n O, we found
P PP

Q = [Ca+b O +c POI+Ca +4b Q +dc QZOCn n o« Cie)
P 1 2 p 3 p 2 3 p 4 p P P
5 o AM
+«(Bb +c Q) +S Qz)w-ol:c +OQ veﬂz)\.'w'w));k -2 .
1 1 p 2 p 2 1 p P

Substitution (12) into (9) gives following four restrictions

for coefficients

3a T+3b +4b +3c S=-2; a_=0; {13)
1 2 3 3 2

36 T+3¢C +4C +30 _S=0, ¢ _T+d +eS=0.
1 1 4 2 2 1

Here S=x/3}j)q=g/s trcw, T:xxsm;‘n/s trCw *>. Additional con—
siderations are'necessary to determine all coefficients intro-

duced.

STRESS—-STRAIN RELATIONS

Let us assume there exists Helmholtz free energy o¥., what is a
joint scalar invariant of damage (w> and strain <Je&> tensors.
It is postulated to be a homogeneous function of degree two in

deformation &:

¥ = 128 e,

where for fourth-rank elasticity tensor % we can use the most
common representation like (11) once again. In the frames of
the thermodynamics of irreversible processes by usual procedu-

re we have

o a piy . W, (14)

stress tensor in damaged media.
Chaboche (1988), Wang and Chow
effective moduli for

where o is overall (nominal)
Such authors as Lemaitre(19835),
(1989) and many others are adopted the

damaged media in form E;:[l—(i—op)m)nE', _where m.,n
Young modulus for isotropic

are

»
constant wvalues, and £ is
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undamaged material .

> Partlcularly, Some authors assume m=n={
So that £ =0 £
P p

In this case it is appropriate to represent
the effective shear

damaged media as
:CQ * - .
upq p*ﬂun /2, where u is the carrying phase shear modulus

. can e Drove T Lahe = =

) ] [x ] T rames o unm iticons use 1hove hat
Tt b f‘ f = asitions 15ed at
stlffness tensor X in (14) SIlOUJd be in form o o

modulus of

E
X° = all.ey W+OCTwrwI Drcuns, ¢15)

and functions @,b and ¢ are of follow kind:

- P
a = 3 S, b = n(c”ﬂ)‘), c = 33:1)'7'-
-

»
% = 200 (Ca-u 5% gy syt

v If str =
°r and damage tensor are coaxial (this assumption e?: t:Zt

essential for further formui 1 ) 1f1
of deformation takes the for;tlon)' whe toral specafic S

»
PU = [C1+ww DY 0 0? _3,* 4 *
[ Latel o ate Jca®s, (16)

aéd 9,173trCo> is mean overall stress. Differentiating the
first from ©9.(14) by the time we find

. ... )
o = XierMo-otrcsd, M = PO U C dedw> . (17)

Th .
e system of eéquations (7),(8),(10).(17) will have two addi-

tional expressions
1 : b - il s ull The first of them is Hooke's

E . .
o = fﬂe‘~a‘tr(£’), (18)

wh * ]
ere o ig effective stress tensor applied to carrying

| hase
material, and r°=x'11+2u'y .

1s virgin elastic tensor. More-—

over , the e Wi A% o Co. -
Sbes_'d d their rates ma be wra Y
Sanomur w ) i’ tten here Similarl to Murakami

p” . . s
> o= Wy > = ‘V:o'o.]"‘:o. (19)

T'he expression for fourth

“rank tensor ¥ was wWritten
above, a
the form of tensor 7 iy

--in-.' = e 4 - P
ceincides with W, afte; @~ aFre replaced

s

by o . It is worth to notice that just external deformation
mn

rate tensor = have been used in equation (18) because mass
conservation law is valid for traditional elasticity.

FRACTURE CRITERION FOR ANISOTROPIC MEDIA

Now it possible to formulate some criteria of brittle fracture
for an anisotropic damaged solid. To this purpose we shall use
an energetic approach which was proposed earlier by Lemait-
re(1985) for isotropic damaged media. Let us assume that
kinetic equation (12) for planar damage measures has only non-
zero coefficient ca;—Z/CBS), which value may be obtained from
(13). By means of (8) we found o:zoiwcssa):-n:@/[s(z—@)J,

where new scalar variable 3=1-5°7° is introduced. In the case
of isotropy (Q=QP=1~§) this variable is similar to the isotro-

pic planar damage measure used by Lemaitre. Determining from
(16) the rate of total deformation energy pﬁ and substituting

the last expression for dp to result we have

2

an—u) o
p“ = E—o —yé, -y = SR . -
Vo B 2£"sc1-8>
where
x ' % o 241/2
o = B [ 213t —20 )[ o ] ] . (20)
D e 3 O‘.
and o, is the Von Mises equivalent nominal stress. The

variable o, was introduced by Lemaitre(1985), who called it as

"equivalent stress of damaged media". If spatial damage
distribution is isotropic <¢S=1-%=D,the variable C-y2 will
coincide with Lemaitre's result.

As Lemaitre suggested, the damage accumulation process causes
arising of macrocracks under the critical value v, of variable

C-y2, which is the characteristic parameter of material given;
it may be received from the test on simple loading. The crite-
rion being formulated is similar to hypothesis of the total
specific deformation energy for undamaged materials and coin-
cides with it when damage vanishes

However, for undamaged and low damaged solids the hypothesis
of the specific shape changing energy is widely used to desc--
ribe fracture. At the same time the hydrostatic part of the
stress tensor has essential influence on failure of a strong
deteriorated materials. With purpose to join this two approa-
ches let us subtract from total specific energy pu those part

pu'v, that expends on pure hydrostatic deformation of carrying
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phase only (but not of whole damaged media). Let us assume
- -
o =amfpz12.3), where o: is mean effective stress, so that it

PP
follow from (19) o;P=QPa:, and from (16) we have

ou™ = 301-20"550"2 e 20>
m

Now using the wvalue pﬂ&p(u—u‘v) instead of pu, we can obtain
by an similar way

. A)_ o
oa = T g(pm_o -z$ 2 = = F ;
“pp PP SE SCL{—8>
where
2. -
'JF—U. ;&Aoi« - (21)

SRSIEN

and Q=1-3trCw-w>. The fracture criterion may be formulated
again by using of the concept of critical value zc for variab-

le C-2>. As it evident.the last item in (21) vanishes when da-
mage is absent, so that this criterion coincides in this case
With appropriate one for virgin solids.

Fracture criteria proposed here that's include by means of va-
riables s.Q and & all three main invariants of the damage ten-—
SOr w, are simplest from possible those in the frames of the
theory presented here. More sophisticated approaches may be
realized by keeping more non-zero coefficients in kinetic
€quation (12) for planar damage measures.
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