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ABSTRACT

A general approach to constructing integral representations
0f general solutions and boundary integral equations of
boun%ary value problem of elasticity theory for regions with
cuts 18 proposed. It 1involves the use of generallized
functions "théory, and in particular of the surface delta
function. Three-dimensional and glane roblems of
elastostatics for an anisotropic me lum with a get of
arbitrary cracks are analized simultaneously. An
axisymmetric deformation 0f a transversely 1sotropic elastic
body with cracks is also studied.
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INTRODUCTION

The method of boundary integral equations, also known as the
boundary element method, 1s widely used for so0lving boundary
value problems of mathematical physics. It has Ined
especially wide acceptance in the numerical analysis of
elasticity problems with multiply connected regions that
contain cavities (holes) of quite arbitrary shape. 1In
fracture mechanics one has to solve boundary value problems
of elasticity for reglons with cracks or cuts. Al hough a
crack can be treated as a limiting case of a cavity, the
direct application of boundary integral equations in crack
problems ‘leads to their degeneration. Therefore, boun

value problems for regions with cracks require a specila
consideration. To reduce a problem to boundary in e%ral
eguations 1t 1s necessary to know an integral re resentation
of 1ts general solution 1n terms of bouncgry values of some
quantitles. Such representation of the displacement field in
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an elastic body in terms of boundary v
alues
R e b R SR e
P o o Sl o mtzéec plroca work theorem. From
general solution for crack prob e?ns gepresentation Tt ine
process 1in terms of displacements g Sontimp1ae - alting
crack surface (Cruse, 1948: Balaéset :lcontinuities et ibes
, H .» 1989),
ggﬁedveggion 0f the boundary integral equatiogl mseotmr?ofiimtiag
o7 Kite method of Egjotential theory (Parton and Perlin
e, », 1989). In two-dimensional crack problems
el agg 1&;lp lication of the complex variable theory the
ompToyed b egral eqtuation method 1s also successfully
ty (Panasyuk e al., 1976; Savruk, 1981: Kit and
£ryvisun, ngse; s%ruk et al.,1589). '
pPropose an approach to the
T e of i S P e
roblems for regions with cuts Thequa oA tnenaim OLtE
. e three-
wlilghplgnesgzéob%%m OCII‘ aecll’%;tos'catice; 1Ior an mi%ﬂ%%sﬁ%n?njéd?gg
are analysed. T
gxe‘éggagéor;lgg gtutazi%résvei‘%seelg isotziopic elggtigx b%weg%ﬁ
general nature and can be extongeq. io Siner multigimens 25,8
er
problems of mathematical physics for regionsmg%&dci:ﬂ%g?ional

THREE-DIMENSIONAL AND PLANE PROBLEMS

Let us consider s81imultaneousl
¥ three-dimensiona
body T Gl SR e 7 8 Ropnenls il
. For s 0se
%ﬁglﬁlge a;clha;, actxle}e quuaw};higrl?: 1é)_xe'es%nted be%iczgrp hold wemsh%llé
roblem, and n=3 to 'the three chme Stona o, 0 [prans
’ ~ nsional problem.
5e Introduce the generalized surface deltapruné(taglon 85 which

1s concentrated on the surfac
e S
éxpression (Kecs and Teodorescu, 1978; %gan%?f%??dmg ) the

(B0s2 T)=f b(X)OGT (X)dx=[u(E)2(E)dS, (1)

S
Where u(£) 1s a continuous function on S; dx=dx,...dx, 1s a
n

volume element
relationship hol (flsndasdsweﬁ a surface element. The following

(—0¢(I-LOS).I)=(ubs.5£f)=fu(€)atf(i)dS. O,=0/0xt. 2)
In the case of g plecewice-continuous function I(x) of a

point x of the Space R® with coordinates (X4s.+.+,X ) that
n

has a discontinuit
y on the surface S,
derivatives in the generalized sense will be exptx;‘}cleesse ag;ial

: air={atr}+[rlsntos. i=1,...,n. (3)
Here {atr) 1s the classical derivative of the function f(x)
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nl=cos(n,xt) 1s the direction cosine of the normal to the
surface S at the point E€S; [r1s=r+(g)-r‘(g), g£€S; the

superscripts + and - indicate the limit values of the
function on the surface S 1n accordance wi the direction
of the normal n (£ (¢) 1s the limit value of f(x) for x»¢
from the side towards which the normal n is directed).

Assuming that the stress components o”=o”(x) (1;J=1ysuesn)

are discontinuos functions on the surface S and taking under
congideration the relation (3), we write down the
equilibrium equations in the generalized sense

ajcl }+x1=[t£]SGS'
Here X,=X,(x) are components of volume forces; t,=t,(x) are

c nents of the stress vector on a plane with a normal n,
deflned by the relationship

b ®=0yom =T, (0,0, )u, (), (4)
TiaMy00,)=Cy 120 (X)0;,
where u,(x) are components of the displacement vector, and

4 jki are elastic constants. In the same way, assuming the

displacements being discontinuous on the S, the Hooke’s law
1s written down 1n the generalized sense as well

941=Cyjr1 (Oluk—[uklsnlos).
As a result, the equilibrium equations in displacements take
the form .
Ltkuh+xt=[tz]s°s+°t}kzaj([uk]snlcs)' Luf"zma)az- (5)
The components U”=U”(x.y) of the tensor of fundamental
solutions satisty the system of equations

LiaUna="01a0 (X-¥),

where om 1s Kronecker’s delta, and 8(x) 1s the delta
function. With the aid of the fundamental solutions Ut }(x.y)

and of the formulas (1) and (2), we obtain a solution of the
nonhomogeneous equations (5) in the form

uk (x)=£nx£ (Y)U“‘(I-Y)CW-I([H (n) ]SUtIe(x'n)—

S

with N
le(x.y)ﬂm(ny,ay)UM(x.y) .

Let us consider boundary value problems when on the faces of
the cut S the displacements (the first basic problem)

Uy (E)=V, (E)7, (£), EES (7)
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or the stresseg (the second basic problem)
t4(6)=D, (£)+u, (), ges
k & e 8)
are specified. Stresses are assumed to v inr
ani
By satistying the boundary conditions (7) ?a.lrlldat(S) va':ll’ltilffyihe

ald of the integral re rese
ntatio
components u, (x) (6), we c?btain bomgm'grmgggz‘agiggég%%%t

In the case or the first basic problem we have the equations

ng mm,k(e.m—u,rn)Um(e.n))dsn=vk<s)—f Xy (90U, (6.7)dy,
n
R tes (9

for Iinding the unknown compo
nents
2y (E). FOr the second gasic p%bfgg Jvléglp 8gtgfges§gg

hypersingma.r Integral equations
21.(7 ( )s » ] =
. 1 MS,, (£,m) “tm)DH(5'"))‘1577‘1’1‘5)‘%-")(1 (y)D“(E.y)d.Y.

€ES  (10)

for fing %
displacemeir?% 271:?5)}11111{%119311 components of the Jump or

S x. = (, X —"[ n (, U X

an
;93; gioln the abcence of the Jump of Stresses (4, (£)=0) the
e% al..n159 é 5 SJ.) coincide with those published earlier (Bala¥

AXISYMMETRIC PROBLEMS

AXisymmetric problem of
elasticit for
é;ggrogric body, when the Plane of 1sgtro y 1§ notII';ggf vggsglllser
robleot revrolution. 1s decomposed ingo two Independent
o foTIa 10 0 axisymmetric torsion and axisymmetric
e Ig In the case of an 1isotropic elastic body with
o8s rafggofacks both problems were studied earlier (Savruk
probiem s It 1is own that the axisymmetric torsion
Peducen a homogeneous anlsotropic bo of revolution 1is
5 sime 0 the similar one of an sotrodfc body by means of
The ple ch?nge of spatial variables Lekhni tsk{i1 1977)
) O axlsymmetric deformation of a tran'sverselfr
s as% u?n ebod,z requires a special consideration.
transyoray hat ™ the distribution of Sstresses In a
about oF y isotropoc body of revolution 1g sSymmetrical
coordinate systay Je OLit1on. let saxls gotneidyoyLindrical
» ’ —axis
gg:rtg m%ﬁ: g the body. Then the ;inroblem o(rmltzgieidax s%gtf}ilg
componenton Of such bodies S reduced to finding two
8 of the displacement vector U, u and four
2
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components of the stress tensor Oppr Oypr 9,, and G, Let a

system of axisymmetric cuts on smooth surfaces of revolution
an elastic medium. Denote by S a set of cut

be located in

contours in the half-plane II={r>0; —w<z<x}. Assuming that

the stresses are discontinuous on the contour S, we write

down the equilibrium equations in the generalized sense
aﬁoaa+'ta/r+xa=[ ta] Sos i

where TP - . T =05 .8 8,=0/X%,, X,=r, Xx,=z. Here and

henceforth, the Greek substrips take the values r and z. In
his case the Hooke’s law takes the following form

t
(Lekhnitskil, 1977)
crr=A118rr+A128¢@+A13szz.
o¢¢=A128rr+A11emw+A13612.
Gaz=A13err+A138¢¢+A33€zz. orz=A44sr3.
where A11. A12.... are elastic constants;
a”=arur—[urlsnrcs. e“=azuz—[ul]snzos.
e”=azu,_+6ruz—£ur]Snlos—[uz]Sn’_cs. e(pcp=ur/r.
The components of the stress vector tq(X) on a plane with a

normal n are defined by a formula similar to (4), where
operators Tag(nz'az) have the form
T”(nz.ar)=A11nrar+A44nzaz+A12nr/r.
Trz(nz'ax)=A13nraz+A44nzar’
Tzr(nz’az)=A44nraz+A13nzar+A1an/r'
T“(nr.01)=A44nrar+A33nlaz.

The equilibrium equations in displacements 1n the
generallzed sense are written down as follows

_ +
Lapup‘*xa‘[ta]sas“‘am(ax)([uﬁ]sn'yos)' (11)
where

- 2 g2 2
L"—A11(ar+(1/r)a’_ 1/r )+A44az.
L”=(A13+A44)araz, I‘”=(A13+A44)(‘3,-5;“‘(1/1')6;)-

- 2 2.
LzZ_A44(a”+(1/r)0r)+A3302.

2 _ _ t -
Arrr(ax)_A11art(A11 A12)/r' Arrz(az)‘A44az’
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Ay (8,)=4,,0., AY,,0,)=4,.0, SR
Pundamentay A{;;;i;;;ifzri?11:?44(5,t1ir): A%zz(az)=A3362.
equations 18{%:¥)  (y=(r',2')) satistying
are expressed 1in termsLC:JﬁIULﬁl—lioatf(x_y)

Mak f;tféintegf?ls (Savruk, 1993).

use of them and of re ns
obtain a solution of equations (11) 1n(the égéﬂ R0 Bl e

g <X)=gIXa(y)Uaﬁ(x.y)dyg([ua(n) I5Tag (xym)-

-[t 1.U
with a(n) s aﬁ(x,n))dsn

T - i} _

Satisty the boundary conditio
ns (7) and (8
of the %%%egral representation of displacemen%swét?xgh?1g}?

we arrive at two systems of boundary Integral equations

2é<7a<n>Taﬁ<€-n>—ua<n>Uag(E-n>>dsn=

B (O-[X (Vg (e, )y, ges; (13)
2£<7a<n)saﬁ<§.n)—ua<n)na5<e.n) )as, =
“Pg(E)-Xy (3)Dy5(E,3)dy, ges (14)

I

In the unknown Jumps of stresses 2y (€) (13) (the first

basice problem) and of dis
Placements 27, (¢) (14) (the seco
basic problem). Here * ( i

S =7 A
ap (X.7) TﬁY(nr'az)Ta7(x'y)' Daﬁ(x'y)=Tp7(nr-51)Ud7(st)-

In the case Of a system of flat co 1
1 anar cracks in
%nge the systemg (13) and (14) gre decomposed 1%%% p%gﬁg
pendent equations which can be written the form
©

an(r')r'dr'fJn(tr')Jn(tr)dt=rn(r), TES; (15)
S 0

@
' 4 L] 2 L]
an(r )r'dr gt J, (tr )Jn(tr)dt=gn(r). TES; (16)
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where n=0,1. Here Fn(r) and G, (r) are unknown functions;
tn(r) and 8,(r) are specified functions; Jn(t) 1s the Bessel

function of order n. When the S 1s an internal (O<r<R) or
external (R<r<«) circular region the equations (15) and (16)
are solved in closed form for arbitrary n>0 (Savruk, 1993).
In the case of a penny-shaped cut we have

+1

Fy () = — == T J zJ
" r x2"Ae_p? 0 212
opn R dat t x"+1gn(x)dx
G,(0) = = f J
" r t2"2r2 o LR
with Gn(r) satlsfying the condition Gn(R)=O.

The last equation of (17) provides the possibility to write
the closed-form expressions of the streSs intensity factors
KI and KII under the action of volume forces in a solid and

arbitrary nonself-equilibrium tractions on faces of the
penny-shaped crack. When the volume forces are absent
(X,(x):XZ(x)=O) these expressions take the form

(aT)

o Rrp,(r)dr
Ky = - I .
YR o RZ?
. [?rzp,mdr b?
Kip = - + m(r)dr]
I 1
RV Lo RILP o

with
by=(T/2) (A4 /Ay5-c?)/ 5 (a24c?),

2_ B 4
87=(Ay14137241 34 4~A13)/ (2Ag345,), c*=h, /Ay,

The case of an external circular crack (S={r»R; z=0}) can be
considered 1n a similar manner (Savruk, 1993). The
corresponding expressions of stress intensity factors are

@ TP, (r)dr o

7= |
Kp=-— | J —— +b,Ju (r)dr].
I 2
mR * R -R R
@ p,.(r)dr
R WZ-R?

with
- 2 é )
b2-2A13(1/A44—1/A33—A13/(A33A44)+1/(A33c ))/ 2 (a+c).

It should be noted that the solution (18) 1s obtained under



the condition that the displacements are equal to zero at
Infinity. To avoid such a restriction one should carry out
an additional analysis, similar to the 1sotropic case
(Stallybrass, 1981 )
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