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ABSTRACT

Stresses or displacements benaviour in an infinite oody aear
the apex of a plane wedgeshaped defect is being studied in
the present work on the basis of u discontinuity solutions
method.
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THE DISCONTINUITY SOLUTIONS FOR SPACZE
Suppose that there is in elastic medium in a conrdinate Sy s-
tem » , & , 2 1in a plane z = O is preseat a defecty i.e.
region « , at intersection with waich the field of displace-

ments and stresses undergoes discontinuity. Let us introduce
the following notations for jumps

U, (76,-0)- U, (= 6,+0)= <>
U, (76,-0) - Uy (r,0,70)= >
e (,-0) = 4 (70,70) = <> s

Gy (o0~ :(her0)= <C;>
T (38-0)- Tn (870 = %>

Too (7 6-0)~ %o (7 879~ “G>
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The solution of equationg in theq lci i i

. s : C 1§ t Ty of elasticit includi
Ene given Jumps, i.e. @lscoutlnuity soluti;n waz obtaineggin
the paper vy U.A.llorari ang G.Ya.Popov (’IQQOS. This solution
nay be represented in the following form

{ U= @“”U{Sq}v“ﬂ/‘;@l{se}
{o=}=I £PHS )1 A¥]{s.},

’ e ° ° apy”

Here {U°}=j ¢, b &ll, (G}= o2y Col are
dccordingly tpe d}splaqement and stress vectosrs in elastic
medium from the given jumps (1), only those components are
Yeing left waich are necessary to the boundary problems;

_— Y &
a{;:zua}cc !’5?3 ((-j?> N L/E>t" ” {Sc‘}:”(?’f’> (???> <G>
2 ordingly jumps vec ors of the corresponding functions
in the point r=9o, 9——-2 > Z=7Z l,(;_@l are matrixes

with dimensiong *x3, for example
@ ® )
Z’.r 73; 7;3)
@ ()] @
<%=l 7 z® 1
®) ®
o ¥ el
Integral operators act according to the rule

7.".(7= SX f, ﬁ:ﬂ'/,af@.;)yajoa’g,/= 8- (4)

7 @

(2)

\4
@
—~
N
A

have been given in the above - mentioned paper by G ALl i
and G.Ya.Popov (1990), for example i ¥ Sl dammm,

&=~ O kR (-3 » S RZL (- peos ) 5

* 30 (-2) R %o 7 (- reosy) | snp
= G 7 (bx-Damsp - 37 22)R - geaspp-rens) -

#30(7-2) R o 2*5np ]
&= G2) e 27 (Do 5(6-20) 71 g sy

- 305_,)p"’z%—f&a/)(f"'%/)]
£, = ) e #73[(Gx-3) + 3ﬁ-?})9_f(§""°’¥‘)+

- 30@1)?“’/‘:?2&‘.9"‘5/)]‘;"’/
(R= (% o2 .w-fcoa/)n)
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lern @ - shear modulus; e = 72 ("1”)/(")“),' ¥ - Poisson’s ratio.

Jiscontiauity solutions perait to obtain a systea of integ-
il equations for unkncwn Jjumnps on condition of a defect. In
ieneral case, this systeam has the sixth order. Not to consi-
{2r on general case, we snall examine the case when in tae
lune  2=0 there is a defect in the form of wedge-shaped
crack suojected to displacement shear.

TH& PROBLEM CONCERNING WEDGE-3HAPED CRACK

3Y DISPLACZMENT SHEAR
Let us assume that tne crack is located in the plane 2z = 0
#nd occupies tae region 181 S, 0spr <. The strained
state of the body is suca that only displacement jumps «, ,
o =zppear on the crack surfaces, i.e. it is in the state
of shear. The strained state of space is presented in tne
form of a sum of the basic one caused by an external load and
perturbed by presence of the crack

T!o"'?;*?u. 5 Tep =Tl + TR

waere the function of the bases state is marked with aste-
risk.

Let us assume, that the crack surfaces are free from stres-
ses, 1i.e.
Ty (7.6,20)= T, (7,6,20)=0 (5)
Tae system of integral equations for unknown jumps <>, <>
will be obtained by means of (2) realizing the conditions on
tne defect (5)
@ @) =
75 4>+ 7o Y>=£7(56)
e 1) =
o <y>+ 7 US> =fr (58)
The operators ZT” are calculated according to (4) when z=0;
functions j}(&gl are dependent on the basic state of the
elastic body.

(e)

The system (6) allows to find tne unknown jumps < .>, <e>.
It may be as well used for studying thne displacements beha—
viour near apex of the wedge-shaped crack.

¥e introduce the notations

we)= g(({’,>(f’r?)f’&,ﬂ_’?’%@)" S<£/;>(p’?)f7:-{{? 7

Jultiplying (6) by »% ang executing the integration on » in
the limits (@, e we shall obtain a system of one-dimensi-

onal integrﬁ} equations

S €I o= {F}, {B1=1% @1 (8)

-l



latrix elements IKll nave the fornm

)=~ Cus-5) 2] o)
'62 0,) = S* [@zs— S—/) Cg/@_;’f-%ﬂ“ﬁ‘@ﬁ*‘vqc/‘/so-l(—cq/gJ

- -
GBS (Cx a5t s GO Coap)n (2 r5)oscp R o]
&, ()= s* [2x(+-s) »5-2] e;’(-cq/),' 5% = :rs/&-'n:zrs
)
Here A are associate Legendre’s functions und diver-
gent integrals can be understood in tae aeaning of finite

part of divergent integrals.

Using the results of d.3utensn and Asdrdelyi’s {1977) prafe-
rence-book we can show, that

& ()= 2(2xs-1- s)/(é")/ » ()

%) = 4 GDC)f 225 G (111 /) » £ ()

5 )= 2/(-9p ~(4x-3) s e (ip1 )+ £ )

%)= 2 ex -9r 521 f-9)p + 570,
where fé;ék) are coantinual fuactinas.

After reducing the integration interval to thes leagta (-1,1)

the system solution isg‘oeilng found. ia the fcrm

52y 5/9);_’,—0: Z” /\Cnafn-f(o)
ey
% «e)= 53 >~ ), U, @)

g?:é‘e U, ) are Tchebysneff’ s polynomials of the second

(%2

Continual parts of kernels K &) we shall approxiuate
with truncated Fourier series Dy Tchaebysheffrs polinonials-

. Sth adP)
fIE= 22T, @ U, )

Coefficients Qf"’/‘{ ndy be calculated by means of the well-
}(nown formulas “which can be found in the reference-oook by
V.I.Krylov (1967) .

~ L
Rp) 7 *
Q e — 0 (A-a,)-
o wﬁwr)ﬁfé,‘;)gi-zr bl SE

. J‘c‘;,z-?g 7¢:, G") (5'-/ (?2)

(% = s [Rp-pa/2u], 3, = cos [ g7 /He0)])
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subhatituting functions (9) in tae system (8) and multiplying
aftap that by Ta,®/Vi-62 and by integrating in the linits
£ {-1,17) we shall get a system of algedbruic equations for
fatermination of unknown coefficients 4, i Yo

v
@,
72 Q, '\/‘,_’* './#ﬁ“ é:g-) g ’. ag—,:’}/vm * % qflbv (K- ):‘-l)',.
- =
< [= (r.2) —
* "-——-‘m_' [ q’m/ot»l,m-y*l/¢@&;f akm ]);_ g"k

~
% p, Q, (ﬁé’;) (X‘_— Xb:) + Z’: [-mq,/o“’ . '/4(/+5,,)Q£’;')J X
m- ~ 2
CAT N+ (140,,) ,,Z Al g;,x)' KEly2s eig W
-7

(10)

fhe following notations are used ia the system (10)
Q= 20225 S-))/(S-1)C; @y m (h-p)/[(F5)C?; @ = - 228

C= 2/(5- Yy Gom (3F-2)S; = 2 [22(-3)w5-2) (F-5)
Sa=-thr2; /q,,,-'-'/’ﬂ),/ﬂ"f,?.---
pr,,":o 5 is even

Pem=1
Pom= [72e0™] /25 Xe=Ye=0, k<0

If the determinant of system (10) is put equal to O we shall
Zet the equation for determining  the parameter s. The comn-
putations show that in the interval 1 < s < 1,5 there are
two near roots. The values s are given in table 1, when

> = 0,3 for various « .

if k+m

if m>4s and 4m is odd

Table 1

So, the jumps 4> | <UU> behave as O( 7%’ ) when ~—— O.
The displacements U, , U, have the same singularity while

the stresses behave as 0O(»%% ),

Considerable difficulties can arise when calculating the root
with direct methods. Therefore, it is expedient to apply tae
programmes of minimization of the determinant, preliminarily
representing the system matrix in tae form IVI-§6H-UVH wanere
i, vt are the rotation matrixes and HGY is a diagonal
matrix. Then tae determinant is equal to det IGl . These
applied programmes have been taken from the book by E.Forsyta

et al. (1977).
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£32in rigid or flexivle inclusion were being studied.

Ia conclusion we shull mention, that the behaviour of stres-
58S on the upex near the plane wedgeshaped crack at normal
discontiauity (t1e jump undergoces only the displacement U,
was Deing studied in the paper by K.Takakuda (1985),
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