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ABSTRACT

Progressive radial cracking of a floating plate and its consequences are studied. The
material behavior is assumed to be elastic-brittle. The cracks are assumed to be
‘relatively’ long in the sense that the three dimensional contact problem can be
described in a statically equivalent two-dimensional idealization. The number of
cracks is supposed ‘large enough’ to permit a quasi-continuum approach rather than
one involying the discussion of discrete sectors. The formulation incorporates the
action of both bending and stretching as well as closure effects of the radial crack
face contact. Fracture mechanics is used to explore the load-carrying capacity and
the importance of the role of the crack-surface-interaction. In this paper the complete
formulation is given.
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INTRODUCTION

The bearing capacity of floating plates has received a great deal of attention in ice
mechanics, wherein the majority of papers have considered the quasi-elastic response
of fully intact ice covers (Hertz, 1884; Wyman, 1950; Meyerhof, 1960; Nevel, 1970
& 1972; Mohaghegh and Coon, 1975; Frederking and Gold 1976; Beltaos 1978)—
the great number of papers in this area have been thoroughly reviewed by Kerr
(1976). A thorough understanding of this topic is the key to the provision of winter
transportation routes (Gold, 1971) and easy access to construction sites on rivers and
lukes. Notwithstanding the large number of papers on the bearing capacity of ice,
there does not exist an analysis of radial cracking and its consequences. The formation
of these radial cracks is as follows: under increasing loads, a surface crack initiates
at the bottom of the ice sheet. This crack propagates up through-the-thickness as
well as radially. At some juncture, further cracking ensues such that eventually a
multiply-radially-cracked zone has developed. Ultimately, circumferential cracking
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s caused by tension on the top surface of the ice. No study to date has included

t?e eﬁ'fects of crack face interaction on the bearing capacity and breakup mechanisms
O an ice sheet. There exists no rigorous explanation of the observation by many

in’ produces & wedging action that allows the ice sheet to maintain a finjte bearing
:}?ilzizlty.h This wedging action,. or crack face interaction, should be more evident for
e T sheets. Analyt:cal.ly,.thls 18 a complicated fracture mechanics problem in that

e .Oadxng at the crack-tip is not purely Mode I but, in a]] likelihood, involves a pro-
portion of the other two modes; the crack face interaction is actualI;' a complicated

t ) .
hree-dimensional contact problem. The contact pressure distribution is unknown

;)Z ze re.latiw.ely’ long in the sense that the three dimensional contact problem can
g isfjl.l'bed In a statically equivalent two-dimensional idealization. The viewpoint
opted in this paper forms one extreme in which one supposes that the number

:;t[ir-:;:;m ax:eztl (area I, r < Ry ), the open crack area (area I, Ry < r < R;) and the
e t::rbm ac't plate area II1, r > R?) as indicated in Fig. 1a. The cracks are
imtorantio & e u.mfox:mly stmb}xteé within regimes I and II (r < R;). The in-plane
e prescn.borcehS’g is compressive in area I and is zero in area IL; the formulation
P, actirx es t at Sp acting at z = —¢ 13 statically equivalent to the crack closure
i (in-nlg within the crack surface interaction regime. Given that the wedging
st Plane) of the closure forces may produce crushing, the local action of Sj is

Tbed in terms of both ¢r and e., where z = —ec identifies the transition from the

(;c; u;:lift (w' > p) or is being pushed down (w' < 0), respectively. Note that w(r)
notes the vertical deflection of the plate and v’ = dw/dr. In other words

€f20 if w <0 and er<0 if w > (1)
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M, M,

(d)

(d,e) moment convention
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! Iig. 1 Problem description: (a) three different regimes, (b,c)
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As an e e, if ¢ o] (S
xanlpl s if _rut.hlng ccurs and the crushing str ngth (o8
c

positive constant and j i 1
pos! Invariant with the area of crushing,

is assumed to be a
the above details provide

o = — ’
o= —0clh+ecsga(w)], e; = —sgn(w)h - e,sgn(w))/2 2)

The upper bound of the load ¢ i 1

o P . arrying capacity, given the radially crack

- Segis :CE‘ZI:ssu;nmg thfit in the crack surface interaction a}r,ea ?Cz‘;:;lonﬁgum'
other pas 25° Imo ated w1t.hout any local crushing, i.e., e, = e, = th “On the
ohe and, the lower bound is obtained by assuming e ; e = N e
o *Taction). In the general case ef # 0, and th Sy cantets & Lo
My; the occurrence of this eccentric ini lane f
plane-bending problem. pame

FORMULATION

I. Crack Surface Interaction Area (0<r<R)

For the title axis i
ymmetric problem, the t i i
o el 5 ric | » the angential displacement u, i i
S respec(t:‘),ellae thfi vertical and radial displacement of the plaotelsix?e;g .
R e ¥, and u,(r, z') be the radial displacement for arbitrary 2 Ue. centr.al
R 2 circumferential strain is given by €5 = u (r, - s the e
Placement u,(r,z) at » = —eéc is given by AT =Eu) iy e e radil

up(r,—e.) = u(r) + e.w'(r). (3)

The key to the for ion i
mulation is the coupli 1
/ pling between the in-
i)éa.ne (w, A-.[,, My, Q.) quantities. This plane- Sdirrind Syl
€ expressions for My and e,:

e ! and out-of-
ending coupling occurs solely through

My = Spey, Se <0, (4a,b)
a,
€6 = (u+ew')/r = (S — S )/2Eh
r)/2Lh+e.(Mg — vM,)/ET
where [ = 2h3/3. In addition, e "
EIv" = M, — uM,, (5a)
a
2Ehu’ = S, — uS,. (5b)

At any point i i
P in the plate (in any regime) the equations of equilibrium are

Se = (rS,), (6a)

My = (rM,) +rQ,, (6b)
(rQr) - pgrw = —-rq, (6¢c)
€

where ' ivati
o tge ;elp;efen\tfs the derivative with respect to r. In the abov
ate’s Young’s modulus, Poj ’ o,
o ; ' us, Foisson’s ratio, densit
mtensity, respectively, while g is the acceleration du):;

II. Open Crack Regime (R, < r < R,)

€ equations, E, v, p, h, q
half-thickness and lateral
to gravity.
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In the open crack area, since Se = 0, and My = 0, equations (4) and (5) quickly

reduce to
EI(rw")"/r + pgw =¢q, and (ru') =0. (7a,b)
The solution of (7a,b) and the subsequent use of (5b) give
E—f_f—”‘;ﬂ = Bynevo(7) + Banevy () + Baneva(F) + Banel (7), (8a)
u(r) = Bshlog(r/h) + Bsh, Sr=Bs 2ER? /7. (8b)
where the constants B, ....B4 may determined by boundary conditions and
F=r/A, A =EI/pg. (9a,b)

The solution in (8a) and the functions nev;() (i=0,1,2) and nel; (7) were introduced
and defined by Nevel (1958).

In this problem, it is important to note that in the vicinity of the load (as r — 0)
and at the transition radii (R; and R;) the displacements u = ur, w = u, and slope
dw/dr are continuous, as are the forces Sy, Q, and moment M,. The stress field at
infinity must be isotropic, i.e., Sy = Sp — 2h0. In the case of a non-isotropic stress
field at infinity (o, # o) the present axisymmetric formulation cannot be used. In
addition, the deflection of the plate must tend smoothly to zero at infinity.

IIL. Intact or Uncracked Regime (r > R;)

In the area r > R,, the plate is intact, and therefore

DA*w + pgw =q, 2Ehu/r =Sg—vSr. (10a, b)
The solution to (10a) with the requisite behavior at infinity is
w(r) = C ker(7) + Cokei(F). (11a)
where
F=r/t, € =EI/1-v")pg. (11b,¢)
With the use of (5¢) and (6a), (10b) is reduced to
[r(r$:)] - Sr=0. (12)
The solution of (12) and subsequent use of (6a) and (10b) give
S, = 0,ef2h(Cs + C4h?[r?),  S¢ = 0res2h(C3 — C,h%/r?), (13a, b)
Eu=0,e4r[(1—v)Cs — (14 v)Cih?/r?]. (13¢)

in which o,y represents a reference strength of the plate material.
The Governing Integral Equation

The proposed solution at this juncture has led to a system of differential equations. In
principle, this system could be solved using the appropriate boundary and interface
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Vcvoncli:;:lc»ns. The systen'l of equations is, however, stil] coupled; the solution procedure
tou therefore be still unnecessarily convovulated. Rather, in a direct attempt
© uncouple the abovye system of equations, an auxiliary unknown function f(r) is

introduced as follows to split (4c):
u/r = (Se —vS,)/2Eh + f(r),

w' = r(M, — vM.)/EI - rf(r)/e..

(14a)

This approach ultimately requires the solution of an integral equation, the specifics

of which are now derived.

(r(rS.)]) = S, = —2Eh(rf(r))
It is now very useful to note the following equation and its solution:

ST =5t =t~y sne=-§(L - Z)HE =)

52 r2

(16)

where 6( ) is Dirac’s delta function and H() is the Heaviside function. The complete

solution of (15) follows quickly as

)

h2 Ry
=T+ Gto) 28 (" epte) st 00

Using (5a), (6b,c) and (14b), the governing equation for the deflection is

A"+ (pg/D)w = ¢/D — 4,
in which

#(r) = [Wrf(r)) = f(r)] Jre..

(17)

(18a)

(18b)

As in the case of in-plane deformations, it is very useful to note the following equation

and its solution:
Azwo + (Pg/D)wo =6(6 - ),

where
- _562 Wo(fv'—‘)v r<¢
wnir) = { o A~
in which £ = ¢/¢ ang
Wo(€,7) = kei(f)ber(f') + ker(€)bei(7) — bei(€)ker(7) — ber(€)kei(7),

The complete solution of (18a) follows quickly as

Ry
w(r) = / @o(&,T{a(€)/D) ~ &(6)}de + Wa(r). > 0
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(19a)

(196)

(19¢)

(20a)

00 A9 W

Pt o ot A

where

Wh(r) = Aiker(7) + Askei(7) + Asber(7) + Aybei(7). (200)

From (5a) and (14b) ’
M, =D(wT+uw”) +£f(r). (21)
Remembering that q(r) = 0 except in the vicinity of € = 0, and substituting (4a),

(6a), (17) and (20a) into (21) yields

/”‘ [- (Rl , v29Vg(6) 4 (11— 1)L i(rs:’(r,e))(ef(f)).e] dt

r or h* or
__f(r) | e Bl — (L .
Shee + 'B[aref2h(A5 = T—zAs)] (;Wh + VWI.)- (22)

CONTINUITY CONDITIONS

The general solutions given in the last section contain many unknown constants
which are determined by the continuity conditions operative at the boundary of each
regime. Letting subscript _ and + be the crossponding quantities at r — R,_ and
r — R;4 respectively, the continuity conditions can be written as

U = Wi S, =54, (23a,b)
w_o =wy, M,_=M,,, (23c,d)
W. =Wy, Qpe= G (23e, f)

Besides the above conditions, as 7 — 0, the following concentrated load and kinematic
conditions hold:
27r Qr(r) = P, (24a)

u(r) =0, w’(r) = 0. (241), c)

By examining (14a,b), (24b,c) are satisfied if (Se — vS,), (Mg — vM,) and f(r) are
finite as r — 0.
FRACTURE CRITERION

The remaining task is to formulate the crack propagation criterion. The main dif-
ficulty in this instance resides in the fact that the description of the crack tip is a
three-dimensional problem. Assuming the crack length is large enough, the Griffith-
[rwin-Orowan energy criterion provides a means to overcome this difficulty. For the
title problem, the crack tips are located at the radius r = R,, and the problem can
be formulated as a one dimensional equation in areas I, II and III. The released en-
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When R, grows, the relationship between R,, load P and the deflection at the center
can be explored by employing the Griffith-Irwin-Orowom energy criterion

1 ( dw dP

in which n is the number of the crack and 7 is the energy release per unit when R,
grows. In the numerical evaluation, n and 7 should be given as initial parameters.
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