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ABSTRACT

A non-isotropic fracture criterion, based on the Griffith law, has been proposed by
Sanchez-Palencia and the author and applied to the following situation: even with
very symmetric external loadings, a preexisting notch orthogonal to the fibers (or the
cleavage direction) tends to kink and generates a crack propagating along this privileged
fracture direction. However, in some specific cases of loadings, it can be observed
that the kink stops and the crack restarts to propagate in the original notch direction.
Unfortunately, the above mentioned analysis of the kink process cannot predict this
restart phenomenon, then it is necessary to imagine new mechanisms. This paper is
devoted to the description of such a process: the onset and growth of a 3-branch crack
at the tip of a straight one.
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INTRODUCTION

In classical brittle fracture mechanics [Bui, 1978], isotropy is invoked twice, first for the
elastic behaviour and second for the fracture criterion. It seems rather natural to con-
sider that non-isotropic elastic materials enjoy non-isotropic fractures modes [Leguillon
& Sanchez, 1991]. A fibrous material such as wood is a good example, but this applies
also to 1D fiber reinforced composites or cleavable materials. In a first step, it is nec-
essary to recall some brief results of a previous paper [Leguillon, 1992]. It deals with
a 1D fiber reinforced carbon/epoxy (T300/914) with the following non-zero 2D elastic
moduli:

ailn = 12.7 y 41122 = 6.72 y Q2222 = 145. , Q212 = 4.85 (Gpa)

The fracture energy per unit length (in 2D elasticity) is denoted v and takes 3 distinct
values: 7, for fractures occuring along the fibers, y; > 7, for fractures orthogonal to the
fibers and y3 >> 41 > 72 in the other directions (to inhibit these remaining directions
for simplicity, but it does not play an important role). Then, it is proved (see eqn.(6)
below) that if y2 < 0.09 v, a classical singular mode 1 acting at the original notch
tip triggers a kink along the fibers instead of a straight propagation. Depending on
the non-singular part of the stress field around the initial notch tip, this kink can be
stable (i.e. can grow only with increasing external loads) or unstable (at least at the
microscopic level that is the scale where asymptotics are performed).
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Nevertheless, whatever the kink length,
.the onset of a new crack in front of the

competing,
THE 3-BRANCHES MECHANISM

;rg}g: S;\l/lldy’ takes place within the matched asymptotic expansions method ([Van Dyke,
» Maz'ya & Nazarov, 1988]). Two states of a structure are examined: the un-

perturbed one corresponding to a body with a single straight notch (Fig.1) and the

Fig.1. Geometry of the 3 — branch crack

The change in potential energy between these two states can be expanded as:

36 &
W3 =W _ e = eApgkpky + O(ev/) (1)

where the A4

b
\ pqg S are constants dependin A i
ot p g on A (or u), computed by contour integrals

Vet T rp;rol;l(:zl of the ma_tched asymptotic process. The ky’s are the stress in-
counterpasts) t;)l de two. classical fracture modes (more precisely the non-isotropic
N i » they f:a.l with the unperturbed state. In the case of symmetric external
©Oadings implying a single mode 1 acting at the notch tip, (1) reduces to:

W = c411k? + O(ev/e) (2)
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Fig.2. 411 vs X and ¢

In the following, the analysis will be restricted to the situation where the double-kink
propagation is easier than the straight one . In these cases, the change in potential
energy (2) can be written respectively as (3) and (4) for branches with length ¢:

W2 = ¢ ATI2 k2 4 O(e/fE) (3)

W = ¢ AT, K2 + O(?) (4)

‘4;'1/2 and AT, are, as A;;, positive constants but independent of A (or u), computed by
contour integrals in the inner problems corresponding to the respective geometries. The
upper index denotes the angle between the new crack and the original notch. Moreover:
§W3B(X =1) #£ §W! 4 §W?. The Griffith thresholds which allow respectively the
kinked propagation and the straight one are defined by:

D k> L (5)

k2> L > L —
1 A;’“ An

and the condition to the kinked propagation to be easier than the straight one is there-
fore:

Y2 < N (6)

which brings to v, < 0.09 v, for the composite material described in the introduction.

THE GRIFFITH CRITERION
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X hl:i ,tlg‘: :s]SttUdy the mechanism involving A instead of y: the straight branch is shorter

O o Oea eral. ones. Tht? energy dissipated during the 3-branch fracture process is
N v2)€ and it is tempting to write down the Griffith criterion as:

W > On+ 29)f & > p2An+2n 7
Al

:llll;“:ii; :I::; t:tibe lrfsufﬁcient,. the. critefrion must contain in addition the conditions
i theg X o.nsh in the 3 dlfectxons involved by the process. This can be done by
o c()nsidef . s all';ug t propagation of the 3 branches separately. For this purpose, let
dlinnge by 52 Smd tl:ncrem.ent 8€ of ¢ and e = 0¢/L << ¢, the lateral branches both
sy o an e straight one only by Aéf. It leads to the two relations (8), by

¥, the second one must be invoked twice at the tips of the two lateral branches:

{AH k2> Ly,
AT kL AR g > L, (8)

A® _ 4w e /2 “ex/2 o

A A: :;/;1,1 a.n;i2 A, /2 are positive constants independent of A and the coupling
L e . .

ern:) (An + Ay ) 18 zero for straight propagations (as above all these constants
(C)?l:h:;‘:;)mrfuted by contour integrals). k} and the ky*’s are the stress intensity factors
(£3* tal © singular modes at O* (by symmetry &3 — 0) and at O and O*** (Fig.1)
T }fese t86! Op.p081t§ values on the two lateral branches but this does not play any role).

stress intensity factors can be expanded as [Leblond, 1989, Leguillon, 1992]:

Il

{ ki Fliky + O(Ve)
k;‘ = F]’rp/2 ky + 0(\/5) (9)

" 2,
;:,:;J:realpu lZ!.ud the Fl’;/ S are constants depending on A and computed by contour
- g S,bt ey are thc? stress intensity factors of the modes 1 and 2 in the 3-branch
er problem at the tips of the branches. Replacing (9) into (8) leads to:

k12 > L “%h 10
A (FRO))? (10)

k> L 12 (11)
* _— x 2
‘411”/2 (1 1,;/2(/\)) + A”"/Z <F12/2(/\))

,it;:lhe' o(;her hand, assuming that for a small é¢ and ¢ 2> €0 > 0 the 3 processes are
- yf n;l ependent, the corresponding change in potential energy (2) must equal the
um of the changes due to the 3 branches, by identification, it leads to:

Au(N) = A AL (FRO) + 2 [A:;”“ (F20) "+ azmre (72)"] a2
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As a particular case: A,;(0) = A]/%. Using (12), (11) can be rewritten :

k> L it ; (13)
Au(A) = XAL (FR(N)

Finally, the Griffith criterion gathers the 3 inequalities (7), (10) and (13). For small A,
FTi(\) behaves like v/X as A — 0, this is the behaviour of the stress intensity factors
of a crack initiating on the straight edge of a homogeneous body. Thus (10) excludes
solutions corresponding to small values of \.

Some attention can be paid now to the second mechanism involving lateral branches
shorter by p < 1 than the straight one. The equivalent to (12) reads:

Al = ARG+ 20 (4572 (F720) "+ a5 (B 0) ] a0

Then the 3 inequalities of the Griffith criterion become (7) and:
23 R - Ra— (15)
Aly (Fii(w))

B> L o e S (16)
An(p) — AL (Fii(w)

In (14), F;;ﬁ(p) and Fl’;/z(,u) are the stress intensity factors of the fracture modes 1
and 2 at the tip of the lateral branches. As already mentioned for F; 11(A) and for similar
reasons, these terms tend to zero like V# as p — 0. Thus, the right hand side of the
second inequality (16) tends to infinity like 1/p, inhibiting any mechanism involving
small values of u.

As a consequence, the 3-branch mechanism is meaningful only for branch lengths of the
same order of magnitude.

STABILITY

Stability means here that a system of cracks can propagate but must stop for lengths
remaining small and inside the validity framework of asymptotic expansions. A new
growth of these cracks requires an additional external load. On the other hand, un-
stability means that the Griffith criterion is more and more violated as the system of
cracks grows and then that a stop is unpredictable at the microscopic level.
Considering only the first mechanism (the second one leads to similar conclusions), the
analysis requires an additional term in the expansions:

W3 = ¢ AL k2 + eV Bik\T + O(e?) (17)
By, as Ay, is a positive constant depending on A and computed by a contour integral.

T is the stress intensity factor of the non-singular part of the stresses, that is the tension
parallel to the original notch. From (17), it is easy to derive that, if T > 0 then the
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Griffith criterion is more and more violated once it has been reached. On the other
hand, if T < 0, then the criterion holds true untill:

=« Au) K- LAy + 24
Ve < B\ b, [T (18]

§We = (AH(A)kf + 2 VE Bi(}) le) b + O(e) ée [18)

It involves the energy release rate: the derivative of §J3b with respect to ¢ (or to
?). The same change in potential energy due to this increment but computed in the 3
branches separately is:

W= [\ ARk 4+ 2 (45772 ky=2 4 g k;”)] be + 0(6e%) (20

Thig. result is partly due to the fact that the equivalent terms to B; vanish in the
straight Propagations [Leguillon, 1992], otherwise the remainder would be O(bev/ée).
Considering an additional term in the expansions of the stress intensity factors gives:

(21)

ki %k + e GI* T + O(e)

_Where GT and the Gy /25 are constants depending on \ and computed by contour
integrals. Replacing (21) into (20) and identifying in (19) yield (12) and:

3 a7 Ly L3
3 Bi()) = 2x45FGT(0) + 4 (452 F5 ) 6720 +

2 2 2 (22)
43" F0) 657 n)

The important point to derive from above s that, since it is numerically checked that
F1()) 2 0 and GT()) < 0:

Al Fi(A) GT(A) <0
* (AR 61200 + RO apfie) - (23)
3 x
3 Bi(}) - 2X0 AL FRGT(0) > 0
The additional terms to the two mechanisms takes opposite signs, one of the two pro-
Cesses is necessarily unstable. Moreover, depending on the sign of T, if the propagation

is more and more activated in one system, then it decreases in the other. As a conse-
quence, the 3-branch mechanism can develop only with unstable conditions.
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