A PROBABILISTIC CRITERIA OF HETEROGENEOUS
AND DEFECT MATERIALS FRACTURE

P.M. VYTVYTSKIY and R.I. KVIT

Karpenko Physico-Mechanical Institute,
Academy of Sciences of Ukraine,
5 Naukova Str., Lviv 290601, Ukraine

ABSTRACT

A robabllistic ap%goach to stren§th and reliability
evaluation of stochastically defec and heterogeneous
(composite) materials under the complex stress state is
Introduced. On the basis of the defects arameters
;grobability distributions and deterministic conditions of
racture the fracture loading probabilistic characteristics
were obtalned and the boundary state diagrams were built. The
calculations were made for the complex. plane and axiall
symmetric loa and different model materia
representations with cracks or alien inclusions.
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INTRODUCTION

In the process of solid bodies stre th loss and fracture the
heterogeneities of their structure,the defects of different
type and origin presented and develoged In structure play the
important role. The hetemfeneity and presence of defects may
be of different structural level and correspondingly may be
taken 1nto account obviously or by the averaged material
characteristics. In the microlevel the sources of fracture
can be the cavitles, slots, cracks, scratchs, allen
Inclusions of different stiffness and Shape, which cause the
considerable stress concentration near them under bodies
loading. The real strength of material depends on the type,
size, location and quantity (density) of such
heterogeneities. The fracture mechanics study the influence
of separate heterogeneities with deterministic
characteristics (for example cracks, alien inclusions) on the
body 1limit endurance. It establishes the deterministic
conditions of crack nucleation and propagation 1n dependence
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on the physico-chemical (cohesive) and elastlc froperties,
geometry of body, Iinclusions and defects and also on the
external iInfluences on 1t. But 1n real bodies and service
conditions the indicated structural and service
characteristics are c eable, having a certaln degree of
accldentation (stochastition). Specifically,the stochastition
of mechanical and structural parameters, which described the
type, sizes, location and quantity of inclusions and defects
are very essentlal. Because of this, the strength of
materials and resourse (particularly brittle with high
fracture localization) and structures from them are
accldental values with definite probability distribution. The
;tnrobability prediction of such bodles strength properties and
heir fracture criteria 1s the actual theoretical problem,
which has the great practical significance. Until now, in the
most approaches .to probability-statistical strength theory
creation (from the Welbull's works) heterogeneitles and
defects in solid body structure obviously were not regarded.
The calculation of fracture grobability and probabllity
characteristics of a body strength was taken on the basis of
the given from loglical and experimental conslderation of
strength 1imits distributions and (or) body elements stress
level, which only satisfactoryly considered the materilal
structural stochasticity. With fracture mechanics development
(specifically with cracks theory) the works on the
statistical theory strength, which obviously considerated the
heterogeneities and efects avallability 1In material
structure were published. A review on different apgroaches
can be found 1n the work (Vitvitskiy and Popina, 80). In
this paper the principles of theory are stated and the
examples of strength probability and brittle fracture
criteria development, based on the deterministic fracture
mechanics and probabllity-statistical methods are glven.

ALGORITHM OF FRACTURE CRITERIA BUILDING

We shall proceed from the material calculation model as the
elastic continuum (matrix), in which the accldental by shape,
sizes and location defects-cracks and (or) allen inclusions
with different from matrix mechanical roperties are
distributed. Such defects and heterogeneltles, which are
surrounded by closed matrix, formed the ensemble of
netero§eneous elementary particles with one defect or
incluslon and formed the material (body) array (Fig.1). We
consider the defects and inclusion sizes to be so small, that
they don't interact between each other and don't change
essentially the stresses at the dilstance from them, that
under the external homogeneous of a body or 1ts }iart loadinﬁ,
it will be the same for all elements. We shall refer the
various defects and inclusions, which differ so, that require
for thelr describ different determined parameters to
heterogeneities of different types (for example internal and
surface cracks, plate alien 1nclusions etc.). The
heterogeneities parameters of the same type may differ only
by 1ts value, which 1s described by the determined
probabllity distribution . We shall indicate geometrical and
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mechanical parameters of determined  type heterogeneities

by a, (1=1,2,...n), n - number of the glven type of
parameters. They can characterize the environment resistance
to crack nucleation or
propagation, inclusions and

cracks configuration, size and
orientation. Let us suppose, that
for given material the functions
of joint probabllity distribution
of  parameters F(a,, or e Q)
or Joint probability density
f(a,,az,...,an) are connected

by the relationship
o"F(a,,a5,---,ay)

_ n
f(af’a2""’an)_ 5(11502...aan :
* ’P ' In the case of stochastical
1 independence of parameters a,

their joint distribution 1s equal
Fig.1 Graphical presen- to the product of each parameters

tation of loading distributions f(a,,ag,...,an)=
= fy(e)f5(a5)...F (a,). The Torm

of these functlons differ from the structure and material
technolo%y manufacturing. The distribution of each parameter
separately can bDe determined on the basis of statistical
process emplrical data _or from the common
henomenological assumptions. If the material contains the
eterogeneities of different types, we shall assume the
distributions of determined parameters of each type to be
known. The location of heterogeneities of each type density
over the volume (or on the surface) of a body we shall take

to be uniform. The average number ¥ of each type
neterogeneities per unit of a body volume V, we consider as

xnown. We regard the common algorithm of described body
(material) fracture probability and 1imit stress probabllity
characteristics determination and probability fracture
criteria under the complex homogeneous stress state,
characterized by principal stresses p,, D5, Pg- At first we

regard the material with defects of the same type (for
example with identical cracks), and later the approach we
shal generalize for the material, which contains the
heterogeneities of different type. Let us consider on the
basis of deterministic problem solution the condltion of
boundary state body element which contains one defect

P, = (P(a,’a 1---ran-nng); P2=’np,. p3=§P,. (1)

where p,, Dy» D3 ~ the boundary values of principal stresses,

Bnand %— the characteristics of stress state complexity.
ider the fixed m and € the loading 1s characterize by one
parameter p,. ince the determIned parameters a, are
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accidental values with known robabllistic distribution
(a,,az,..,an) than the values pof boundary stresses P,

characteristics are also the accidental values, which change

within 1imits from Pimin tO Pimars Which by the way depend

from the arameters m and £. The probabllity distribution
function o boundary siresses p, for elements with one defect

e narind by the rormula  fop distribution
probabilities from the accldental values tmEEdon

Frppmie) = [ L. If(a,,az,...,an)da,daz...dan :
@(a,.az.....an.n.e ) <p, (2)

The function F,(p,,n.&) can be Interpreted as the

distribution of material elements stre th 1limits for thn
determined Stress field. From the formula 1t 1g seen tha%
F,(p,) depends both on the function f(a,,az,...,an) which

characterized the structure and material roperties and the
parameters of gtress State complexity % gnd €. In most
agproaches, in which the defects and heterogeneities are not
0obviously accounted, the distribution F, (p,) 1s assumed and

glven, 1n this case 1ts dependence on the t e of stress
State 1s not always realized. In consideredy%pproach the
function F,(p,,n,g) 1s determined theoretically " under the

arbitrary Stress state. Let us regard the bo 1ts part
With size v (V may :Lndicqte volumglararea, leng:h)(. IIpsomé

unit of volume V, contains 1n average N9 defected elements,
the body with size v contains in average N:NOV/VO. In brittle

one defect element may cause the global fracture af all body.

1te secure are such stresses, wnhich don't cause the
propagation ofr any defect in 1t. More simple solution we
obtain in assumption of noninteraction ot defects between
each other. In t 1s case the boundary loading or body 1s the
Same with the boundary loading of 1ts element with the lowest
strength. Then the distribution function Of boundary stresses
for body which consists from N elements 1s determined by
formula (Vytvytskiy and Popina, 1980)

Py(PyaMs€) = 1-[1-F,(p, ,m,6) NV Ve 3)

Under the rixed values Py» M and ¢ the value of function
Fy(pyum,€) gives the probabllity P of body fracture under the
g1iven stress Tield effect

Pv(Pyamit) = Fup,,m,¢). ekl
The determination 0f this probability 1s one of the main

roblems of calculation. Under the great N-swo the distribution
v(P;»M,€) transform to the distribution of Weibull's type
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Fy(p,,n,€) = 7—eXp[— j‘;azvoc(p,—p,mm)m] . (5)

Contrary to Weilbull's approach, which take the magnitudes m
and C as constans of material, they are determined TOm

C = lim F,(P,;nng)(P7‘P7mtn)_m ] (6)
P1=Pimin
where the relationship of C and m with the structure
characteristics and type of stress state is obviously seen.
The distribution (5) 1s the generallzation of Weibull's
distribution on the complex stress state. If the body
contains the heterogeneities of different type, which don't
interact Dbetween each other, then 1In this cage the
%ﬁnegalized distribution function of boundary stresses has
e form

E °
Py(p;m,€) = 1 - ﬂ,(f—F,J)V”J/Vo . (1)

Under the great quantity of heterogeneities

R
Py(pyi,€) = 1-exp|- ;_—Y—}’a TN L G

There the index j determines the correspond. values, which
belon§ to the f -type (J=1,2,...,R) heterogene 1y. Having the
function FV you can find the number o boundary loading

statistical characteristics for size V body: the mean and

the most probability value of boundary loadinﬁ; the values,
which correspond to the given fracture probability; variance

and spread boundary Ioading ratio etc. For example, the
mean value <p;> we obtaln according to formula

hamaz VS /Y,
n (1-1?”) J °dp,. (9)

J=1
1Jmin

P42 = Py pitm. ¥

The equalities
<py> = pog,(n,g,N?V/Vo). <Po>=M<p, >, <p3>=§<p,> (10)

Jointly determine the boundary state body criteria under the
complex stress state.

APPLICATION TO DIFFERENT BODY (MATERTAL) MODELS

A Plane Model Body Under the Biaxial Stress State. The

1sotropical plate with scatter rectilinear cracks of
accidental length 21 and orientation angle o 1is under the
action of tensile or compressive stresses p, and P,=mp,. The

crack orientation for 1sotroipical material 1s equiprobable.
Therefore the angle crack d stribution Li(a)=1/% (ld|<n/2).
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For slm}flification let us suppose that cracks presence
robabllity follows to zero under the nonlimited great
ength of a crack. The value 1 1s distributed by the extently

decreased law f,(1)=(r-1)1,(1+1,)"° (0<ls») ; where 1, 1is

scale parameter, r characterizes the structure homogeneity
(with r» Increase the probabllity of great cracks decrease).
The Joint distribution of defects parameters

S, 1) = (r‘—f)l,/[%(lﬂ,)r] (010, |d|<T2). (11)
The determinlstic criteria of isolate crack propagation under

the stress field p, and p,=mp, take into account the change
of 1ts propagation direction

KIc

Z3

where K., 1s the stress Intensity factor, p 1s the ratio of

closed cracks faces friction, 6, 1s the angle of initilal

deviation of crack propagation direction. The function ¢, 1s

obtained in the work (Panasyuk and Berezhnitskly, 1964). On
the basls of relationships (2), (11), and (12) we obtained
the boundary state distribution function F, for the body

element with one crack

p, = @, (d,m,0,,0), 0<PpP<o, (12)

2
_ K 1-r
Fy(pm) = (4,p) 4 [%D?(d-ﬂ-ewp)”fﬁ] dd,  (13)
L

where L 1s the permissible values area under the glven p, and
n. We obtalned the boundary

LiP?YIﬁ/Kza stress distribution function

(F = (2) for the element with one
crack. On the basis of

formula (9) the , boundary
stress state criteria was
bullt 1n the mean values of
fracture stresses (Fig.2).
The solid lines corresspond
to the obtained solution
(Vytvytskily and Popina,1980)
and section 1ines to the
criteria, which don't take
into account the chane of
crack propagation direction.
Under great number of cracks
the accounting of crack's
propagation direction don't
change the type of fracture
criterlia diagram, with the
exception of the field of

Flg.2 Boundary state
dlagram (p=0.2)
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stress compression advantage.

Three-dimensional Model. The three-dimensional body 1s under

the actlon of homogeneous axlally symmetric loading. The
plane round cracks wilth accldental radius R and orienation
are uniformly distributed over the volume. The crack
orientation 1in such field of stresses 1s described by one
angle d (0O<d<m/2) between the crack normal and axis of
loading symmetry. The c}:robability of crack presentation with
angle greater than 1s P=i1-cosd. Then the probability
distribution density Jy(d)=sind. The crack radius is limited
(OsR<d) and 1s subjected to the p-distribution fz(RJ =

(r+1)(1-R/d)"d"! (r>0) (the case of radius distribution by
the exponential law was consldered by Fisher and Hollomon
(1947)). The Joint distribution density

f(d,r) = sind(r+1)(1-R/d)"/d  (0<d<m/2,0<R<d) . (14)

The fracture condition we shall take In Sack form (Sack,
1946). The boundary stress has a form (Krc /a“/z <$py <w)

KIC/WT 6, = p,(coszd +
P, = ®(R,d,m) = { 2(cos’dsmsind) msinfd)> 0, (15)

o, 6, € 0 ;
The distribution function for body elements with one crack
P, (p1 ln) =

<&>_1_/d:/.ﬂ = J JsindrT”U—R/d)rdddR
. @(R,d,n)<p,

N\
\-2-9 We obtained the function F,(p,,n)

\

75\ for different stress type. In
M Fég.a t%g Iractu?iz cri%glt'ia faxe
shown. The sectlon-po e
2{<P4)1/(T/ﬂ corresponds  to thg minimum
fracture loading. For great
| number of crac the results
| >t?,v./02 coincide with the obtalned by the

|

|

(16)

d neralized Welbull's
0" istribution (5). The body
1 strength decrease with stress
| state complexity. The material
heterogenelty Increasing under
the other equal conditions goes
P1g.3 Practure dlagram to the bounga.ry stresses lowering.

(A=1TC K,./2)

A Heterogeneous Plane Model. The elliptical allen inclusions

(@ and b are thelr semi-axes) from another material are
distributed In the elastic matrix (the elastic constants G,

_z-
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and ®, differ from the constants of matrix 02 and ez).
#e shall concider the Inclusions to be soft (G,/Gz<<1) and

flatten (b/a=0<<1). The 1inclusion length 2a and aqgle of
orlentation d are accldental values with distribution ensity

J(&a)=f (d)f,(a)=(r+1)( 1-a/a, )" /(am) (-weaau2, Oca<a,,

r>0). We consider, that the fracure began in inclusion. The
homogeneous stress State arises 1in iInclusion and the most

€rous 1s the cracks formation over the whole length. We
took The Kulon friction law type as a fracture criteria
(Cherepanow, 1383)

A R
Ty = K - tgp Sy » (17)

where XK' 13 the engagement ratio, p’ 1s the friction ratio,
T;y, 6; are the tangential and

normal stresses 1n Inclusion.
The calculations were made by
the described algorithm. In
Fig.4 the diagrams of Inclusion
fracture stress mean values for
the body with different number
of inclusions (for r=1,

1
G,/02=O.1, &, =2, =2, p=0.2)

are given. For the strength
determination we should compare
the boundary stresses for the
matrix with cracks, formed on
the Inclusions glace. The former
we obtaln as t 1s aforesaid.

F1g.4 Practure digram
(T=4K'/(1+2,))
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