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ABSTRACT

An attempt is presented to describe failure conditions for pre-
cracked materials in terms of a pair of classical mechanical qu-
antities independent of specimen geometry and loading conditions.
It is concluded that critical values of elastic dilatational and
distortional strain energy densities can undertake this role in
place of cridical stress intensity factors. Experimental results
show excellent agreement with theoretical predictions. The varia-
tion of critical stress intensity factors from plane stress to
plane strain conditions is, also, explained in terms of these
geometry-invariant quantities.

INTRODUCTION

Historically most of Fracture Mechanics criteria available for
the prediction of the conditions necessary for crack initiation,
are based directly or not on the concept of Critical Stress Inte-
nsity Factors (SIFs). This concept is attractive in the sense
that mathematically advantageous linear elasticity considerations
can be introduced but, raises fatal cuestions on the rationality
of fracture criteria. Really:

i) Critical value of SIF for the same material under the
same loading conditions (e.g. uniaxial tension) varies from Kic
in case of plane strain conditions to Kc = 3Kic in case of plane
stress. This experimental observation implies that either failure
properties of the materials depend on specimen geometry (its
thickness) or that Kic is not a failure property. If the first
alternative is followed then the development of fracture criteria
is impossible, a highly undesired situation. Consequently, the
abolition of SIFs from their place in fracture criteria seems to
be compulsory. The introduction of elastic-plastic stress and
strain fields does not heal the situation since plastic strains
and infinite stresses, necessary for the definition of stress
intensity, are mutually exclusive concepts.

ii) The peculiar behaviour of SIFs, when they serve as cri-
tical failure quantities, still remains even in case of plane
stress or plane strain states alone. In plane stress states the
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classical configuration being used for the study of fr i

teria is that of the thin plate containing a g;raigh:cgggfkc?;-
clined py an angle B to the axis of the uniaxial tensile stress
Jo. It is theoretically predicted by al] fracture criteria e.g

[1,2], that in order for any function of SIFs to keep a co;sténi
value versus crack inlination B, an unrealistically high fracture
stress for small B-values is required [3]. Indeed, for B<10° the
plate can undertake higher stresses when precracked rather'than
uncracked. Rationally, one can conclude that materials show bet-
%g;dpg;fg{mance when they contain cracks slightly inclined to the

In the present study an attempt is resented

above described difficulties in a zimp1é)and consfgzﬁ::;c:gf ;2?
seq on.SIFs. For that the T-criterion of failure [4,5], is ap-

i?resses or changing from plane stress tg plajncstrain condi-
ions. '

THEORETICAL CONSIDERATIONS

?eneral aspects

[t is commonly accepted that stress state of a materi

its pehaviour at failure. The fact that fracture i: g;;aLO:{fggf
ses 1s preceded by varying degrees of plastic deformation, can be
considered as the result of the competition between the failure
by flow (rup}ure, shear band deformation) and "tensile" separa-
tion of atomic bonds (creation of new surfaces). In what follows

when we refer to material failure we mean the failure of an e]e:
mentary volume and not the failure of a structure (even in the
simple case of a single bar tensioned uniaxially), which is a
sequence of an infinite number of failures. It is well establish-
ed exper1mentally that there is a great number of modes of failu-
re expanding from brittle fracture (cleavage or intergranular)
wlthout macroscopic yielding ‘and rupture with a 100 percent redu-
ctlgn of the area as a result of plastic deformation processes
(which may be considered as the extreme case of ductile fractu-

number of suitable parameters.

In_Continuum Mechanics we accept that mechanical work is
stored into ‘the material in two separate components of strain
energy vis. to change the volume (dilatational strain energy) and
to change the shape of the specimen (distortional strain energy).
It is apparent that the ratio between these two energies depends
on the mechanical properties of the material, the specimen geome-
try and the loading system. An energy failure criterion presuppo-
ses Fhat there is enough available énergy to support a failure

i) fails by fracture when the dilatational sfrain n
densipy Tv pakes a critical value Tvo and, SR

ii) fa}]S by yielding (rupture) when the distortional strain
energy density To takes a critical value Tvo.

It is apparent that these two critical values Tv.o and Ton.o
are material properties and also that only the elastic parts of
the abovementioned strain energy quantities must be compared with
these critical values since plastic work, being irreversibly con-
sumed is not available to cause failure.

Mathematical Formulation

In the case of isotropically hardening materials obeying the Mi-
ses yield condition and the associated flow rule the total incre-
ment of strain energy dTo, in the plastic region, is given by:

dTo=pd8+ade+dWp=dTv+d To+dWp (1)
where:
dTv=pd8=1/3 (0i) (dex) (2)

is the increment of the energy for volume changes due to hydro-
static pressure (dilatational strain energy) which is elastic, by
the assumption of the equivoluminal changes in strains

dTo=0de=sides; (3)

is the elastic increment of the energy for shape changes (distor-
tional strain energy), sij being the deviatoric stress tensor and
def; the deviatoric elastic strain increment tensor and

dwp=0inE?J (4)

is the plastic wqrk dissipated for permanent shape changes as the
material is loaded to subsequent yield surfaces in the plastic
region and vanishes in the elastic region or in the case of unlo-
ading.

The elastic quantities dTv and dTo can be integrated over
the load-path and the integrals:

Tv=rpde=(1/2K)p? To=rode=(1/6G)a° (5)

are the dilatational and the distortional strain energy densities
respectively (K being the bulk modulus and G the shear modulus).
It is apparent that the curves p-8 and o0-€ are fundamental for
the description of the behaviour of the material and that the
geometry of the specimen and the external load system only affect
the rate which these curves are traced with. The terminal points
of these curves are, according to the T-criterion [5], the fajlu-
re points and the mode of failure depends on which of these two
points is reached first. When the dilatational strain energy den-
sity Tv gets equal to the critical value Tv.o, which is a materi-
al property and expresses the ability of the material to bear
volume changes, we have failure by fracture and analogously fai-
lure by yielding happens when the distortional strain energy den-
sity To reaches the respective capacity of the material To,o.

In the simple case of linear elastic isotropic hardening
materials the abovementioned two conditions represent, in the
stress space, a closed failure surface which consists of a cylin-
der with radius 2V GTo.0 and its axis coinciding with the hydro-
static pressure axis (representing rupture events) and two planes
cutting normally the hydrostatic axis at a distance v 8KTv.o from
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the origin of the axis (representing fracture events).
APPLICATION AND RESULTS

In order to check the validity of the previously established the-
oretical remarks and see whether a mechanical quantity, (necessa-
ry for the description of a failure condition), exists and re-
mains unchanged for various geometries we apply the T-criterion
to a well known aluminium alloy 7075/76, whose mechanical prope-
rties are: modulus of elasticity E=75000 Mpa, Poisson’s ratio v=
0.32 and yield stress Oy= 549 Mpa. In Fracture Mechanics it s
common to obtain different geometries using precracked plates
with various angles of inclination B with respect ta the external
Toad axis (Fig. 1). Any failure criterion has to predict the cri-
tical external load and the angle of crack initiation 8o

There is a series of experiments [6] which give the critical
external load for crack initiation versus the inclination angle B
for aluminium 7075/7T6, and the results are shown in Fig 2. The
specimens used were precracked plates with dimensions 90X200 mm,
with thickness 2 mm and Tength of initial crack a=15 mm.
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Fig.1 Geometry of the problem.  Fig.2 Critical external load for
fracture vs. crack iclina-
tion.

elements with 306 nodes for the case of B=90° (taking into ac-
count the symmetries of the geometry of the specimen and loading)
and_of 48 elements with 418 nodes in the cases of the rest angles

energies: is drawn around the crack tip.The curves of To are the
well-known ones attaining a maximum value at 8270°. We notice
that Tv reaches a maximum in the direction 8=0 (where the crack
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ts expected to initiate) and thi

s value is according to the T-

criterion the possible critical value Tv.o, for brittle fracture

to be observed. We know from the

experiments the critical exter-

nal load for the geometry of B=90°,s0 we can define Tv.o.In the
sequence we work with various angles B, increasing the externg]
load until at some point in the mesh the quantity Tv reaches this

critical value ,where, by defini
the critical one for crack initia
joined with the crack tip, define

tion, this external load of is
tion and the specific point, if
s the angle of crack initiation

3. The theoretical predictions are drawn in the same Fig. 2 and

the coincidence with experimental
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Fig.3 Distribution of dilatatio-
nal strain energy density
around the crack tip
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Fig.5 Distortional strain ener-
gy as a function of exte-
rnal load in plane stress
and plane strain conditi-
ons

results is satisfactory.
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Fig.4 Distribution of distorti-
onal strain energy densi-
ty around the crack tip
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rnal load in plane stress
and plane strain conditi-
ons

451



At this verse two points must be emphasized. First, a global
minimum in the theoretical curve exists at B=60° in accordance
with some of the "elastic" fracture criteria and the egperimenta]
data presented here. Second, the expected values of o5 for B<15°
are much lower than those predicted by other criteria and they
fit well with the experimental results.

Next, we examine the influence of the thickness of the spe-
cimen in the distribution of strain energy densities around the
crack tip. In a thin specimen the plastic zone extends a distance
which is comparable to its thickness, the deformation around the
tip is accompanied by a latteral thinning and the type of fractu-
re is of the shear type. As the thickness is increased the type
of fracture resembles the tensile one and the fracture surface is
flat in the center of the specimen, where plane-strain deforma-
tion exists. The plastic-zone size is smaller because the stress
condition is triaxial rather than biaxial (as it is in the plane-
stress condition) and the critical external load is lower than
that in the case of the thin specimen.

A1l the abovementioned remarks can be easily and simply ex-
plained if we apply the T-criterion to plane stress and plane
strain conditions for the same material (keeping the same geomet -
ry except of the thickness of the specimen).In Fig. 5 the distri-
bution of the maximum distortional strain energy density in the
direction 6=0 is plotted. It is obvious that in the case of plane
stress conditions this maximum attains greater values, for the
same externally applied load, than in the case of plane strain
and it explains the larger extension of the plastic zone as well
as the failure by rupture since To gets easier equal to To,0. On
the contrary, as it is shown in Fig. 6 the maximum dilatational
strain energy density is greater in the case of plane strain con-
ditions and the critical external load for fracture in this case
is approximately the one third of that in the plane stress.

This observation drives to the most important conclusion for
Fig. 6. Namely it explains the variation of critical SIF from
plane stress to plane strain conditions. It is generally accepted
experimentally that this quantity increases from a base value Kic
measured at plane strain to Ke=3Kic or more at plane stress [71.
This increase in critical SIF is observed because the crack inj-
tiates when and only when Tv takes a value independent from spe-
cimen thickness. For example assuming that Tv.0/0y=8.50 in Fig.
6, the necessary external load for crack to initiate is
0o/0y=0.26 in case of plane strain and 0o/0y=0.72 for plane
stress, corresponding to Kic=0.260 na and Kc=0.7204 na_ and
Kc/Kie=2.77  although for Tv.0/0y=6.80 it is obtained that
Kc/Kic=4.40. The same is concluded when crack inclination B takes
various values. Consequently, in case of fracture there exists a
mechanical quantity (Tv.0) remaining constant and independent of
specimen geometry.

The role of the dilatational strain energy density in fra-
cture is further supported by the curves in Fig. 7 where the ra-
tio Tv/To of the elastic components of the total strain energy
density is plotted versus reduced load at infinity oo/oy, at va-
rious distances x/a ahead the crack. For large distances (x/a=5)
it remains constant not affected by the presence of the crack.
For smaller distances it keeps a roughly constant value indepen-
dent of the type of the material which varies from purely linear
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i i i i i ly elastic
\lastic to elastic-perfectly plastic, implying that on
Zu‘Ji;t;ties are equally active for fracture regardless the type of

terial. ) o
the m?t is experirge%any verified that the ratio of the critical

> oo .for small values of crack inc]ir!ation B,
?;2?;9)&“ i]soarg:chocéreater in the case of brit'tl_e materials tt]an
ductﬂe’ ones. If we take as a measure'of ductlhtx of a material
the ratio ef/ey (where €f is the equwa]gnt strain at fra]cture
and €y the first yield strairg) 9tt)he variatwn.of the critica ﬁx-
ternal loads for fracture os/oovs. the duc't\hty pf an h]ypot e;
tical material, is shown in Fig. 8, assuming various va uest?
Tv.o. It is concluded that for more ductile ma'teria’ls the raf o
for of critical load for B=5° to the respective quantitty o;
B=90° reduces considerably in accordance with experimenta

evidence.
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CONCLUSIONS

shown in the present work that there gxist a gnechamcal
(Iqﬁa:taisty, the dﬂatatgonal strain energy density B which at '%he
moment of initiation of a crack reqches a maximum value v,g
independent of geometrical factors Tike specimen th1cknes_s'an]
crack inclination. Consequently, it can serve as the critica
quantity for the development of a rational fracture criterion.
Such a criterion cannot be based on the concept of stress
intensity factors to the degree they depend on specimen geometr{:
which by no means can be regarded as a fracture property o

materials.
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