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ABSTRACT

'his work describes a numerical analvsis of two-dimensional
stress-strain state ot contacting elastic bodies with cracks.
I'nilateral contact conditions are given on a priori the unknown
contact =urfaces of the bodies and the face of the cracks. A
varialional-inequality formulation of such contact problems is
obtained. Finite dimensional approximations of the problems are
~onstriucted by means of finite element methods. The complemen-
tarv constraint method suggested by the author is used for mo-
delling the displacement field in the vicinity ot the crack
tips. Some numerical results regarding the contact problems of
the elastic bounded bodies with surtace and buried cracks have
been obtained. The intluence of a contact effort distribution
on stress intensity factors has been analyvzed.
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INTRODUCTION

l'he indentation tracture is a subject of great interest both in
theoretical and applied mechanics. The modern view of fracture
mechanics of contacting bodies and the methods of its applica-
tion was presented by Kolesnikov and Morozov (1989). The consi-
deration of real contact stress distribution was stated to be
hecessavy tor predicting the behavior of cracks in contacting
hodies. But as a rule, the question of contact interactions is
reduced to the study ot contact efforts, to the determination
J)f e¢ontact hardness and contact size. The problem of stress
distribution in contacting bodies in the presence of crack near
the contact area has nol been enough analvzed.

To this work the computational algorithm based on the finite
element. methods is developed for solving the two-dimensional
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Cr;ﬁz:tﬂygo?iems of the system of elastic bounded bodies with
ajqor;th) .or evaJuaFlng stress intensity factors. Using this
LR M- some  numerical results regarding the stress-st i
state of cracked bodies are obtained. e

STATEMENT OF THE PROBLEM

Let us ¢ 5 A sv 4
consider a svstem of M contacting elastic bodies, which
Qccupy the two-dimensi !
Sional bounded domain O oM i
i .y with regu-
. - A rectangular Cartesian coordinate sys-

tem Ox is : i
. YUNyN, is emploved., With respect to it the components of the
displacement vector,

lar boundary !

it il L o of Fhe ﬂeformation and stress tensors at a
PR re uj(m), tlj(x). "!j(x) respectively.

The boundarv '™ &
arv of the body Q" can be presented ag the union of

the tour disjoint i 1 =r"ur™rmor™
: portions F-T;W}UF;H}. On the portion F: the

displacements " (y i
S 2 (x) are given: on the portion F; the surface

tracti "(x i
actions P (x) are given; F: denotes the set of the limiting
areas on which the body Q"

bodies; "
P

may come in contact with the other
stands tor the crack faces of the body Q™. The boun-

dary condi tions o
A n I & I epresent e o i o]
and ., repr th conditions f the

unilateral] contact without frietion

o p
TolxT) = o (x") s gy
m b
J (X = ¢ - .
ST = o M) = o,
m
WX+ u (x") < R

l’“ m k 2
x T, x"xMye rk, (1§
+ -
xn(\ ) = "n"( ) < 0:
+ ”
,1'(\ ) = ”,(X ) = 0
+
un(Y )+ u"(x ) < 0;
‘ +
'n(\ )[ U (x ' ) + u (x )J = 0;
+ R -
X € [:. TixThe (2)

v P

where ¥"% (™ i
(X") is the normalized initial gap between the bodies

N

and © e a poi m m k m k
at int x €[7; x < )€l i 1

Lo X (x) . 1s the point of the in-

ersey lon of 1 bo ry I with the 1ormal to the 0
1 t he unda
At the poi1nt X

.n

i indices "n" and "t" denote the normal and

t = i 1
thZential components of vector respectively
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ijo the probiem 1s to determine tunction u (x), {x), 7 (x),
i J i

£ ; 1 " A .
atistfying in the domain ¢ ,...,0 the eqguilibrium equations
with volume forces pkF ., the generalized Hooke's law, and boun-
1

lary conditions specitied above. In addition it 13 necessarv to
determine actual contact areas and stress intensitv tactors.

VARTATIONAL FORMULATION OF THE PROBLEM

For solving the problems a variational method is used. Let us
consider direct product of Sobolev's spaces
1,113 1, M 13
H= [(w o] e . .ofw, )]

and extract the set of admissible displacements

vV = v=iv', oo v Men: v?(x) z q?(x), xFFS;
v:(xm) + v:(xk) < ¥R ™y, xm‘rf. xk(xm)fFi:
—~ <.
vMixty e vMix ) < 0, xTer", xTixtyert }. (3)
n n p : P

l'o simplify the notation we introduce the following designa-

tions "
m m m
alu,v)= ) maijklEijlu ety ) dQ (4
m=1
i m
- _\v m mym o
Liv)="), impFivde + iij\idF (5)
m=1
(a2
where a? are the elasticities of the material of which the

ijkl
body Q" s composed. Using the technique developed by Duvaut
and Lions (1980) and assuming that

m m 1/2 m .m
al € L@, ge wiry, P L,
pE"e L0, e w3y, m=1.2, .. N, (6)

we can prove the following statements.

The solution u of the problem considered in the difterential
formulation satisfies the variational inequality

alu,v-u) 2 L{v-u), Vvev, ufy., (7)
[f the solution of variational inequality (7) exists and has
the second order derivatives (at least generalized)., it satis-

fies the equations and the boundarv conditions of the problem
considered in the ditferential formulation.

The variational inequality (7) is equivalent to the nonlinear

programming problem
inf Jiv}) = % alv,v) - L(v) 1. (8)
vev J
The results obtained by Duvaut and Lions (1980) mav also be

used to be analyzed the issue of existence and uniqueness of
solutions to (7).
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A FINITE ELEMENT APPROXIMATION OF THE PROBLEM

The formulation of the considered problem as the
programming problem (8) is used for elaborating the computatio-
nal algorithm. The problem (8) is approximated by the i
element methods, with the triangular elements ot the
order being used. On the faces of cracks and on the

finite

tfirst

. limiting
m

contact areas FC and Fc nodal points are placed opposite each

other. In such a case the convex closed set of nodal admissible

displacement is obtained as

1 1 2 2

V= § z=(u (P, u P, u (PF) L, pY)) e RV
.

x v m
u (P i=g (P"), Pe I ; (9)

un(Px)+u"(P“‘)S \ymk(Pt" Pk“: F’t“ P’*(P')(" rk:
Tiptye 1 L,

1 N ’

where P ,...,P are nodal points; z is nodal displacement vec-

u (P+u (P )< 0, pe ™ p
n n P

2N, . .
tor; R is 2N-dimensional Euclidean spaces. It is essential to
be noted that the normal and tangential components of displace-
ment vector are used as nodal displacement for the nodal points
placed on FC and Fp. The energy functional J{(v) is approximated

by the function of several variables
1 T T
Jz)= 5 2 Az - B oz, (10
where A is square [ZNXZN] stiftfness matrix; B is the ZN-
dimensional vector of external ftorces.

In this manner we obtain the guadratic programming problem

@is J (z) (11)
25 ¥h

as a result of the finite element approximation.

THE COMPLEMENTARY CONSTRAINT METHOD

A near crack tip displacement tield is known to be described bv
the asvmptotic expression

u (x)=u + K F (x) + K}¢l(xl. (12)
where K| and K, are stress intensitv tactors: u are the com-
&~ 0 - - -
ponents of a crack tip displacement vector: F (x)., ® (x) are
i i )

the known functions. The complementarv constraint method
gested by Bobyvlev (1988) is used for modelling that

Sug-

displace-

ment field . The main purpose of this method is to construct
the approximate solution ot a crack problem. which satisfies
the asyvmptotic expression (12) at the nodes of some crack tip

vicinity.
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nonlinear

Lot o bhe a small region in the vicinitv of a crack tip and in-
¢lude this tip., It follows trom asvmptotical expression (12)
that a region located at a crack tip has the 4 degrees of free-
dom. [t the region ¢ contains the L2z3 nodes, its discrete mo-
del, on the other band, has the 2L degrees ot treedom. Hence,
it is necessarv to i1mpose the 2L-1 complementarv constraints on
the nodal displacements to make an approximate solution satisfy
the relations (12) at all the nodes of the region 9.

The procedure being used ftor the constructing complementary
constraints is as ftfollows. The 2L-2 equalities of the type (12)
are written for the nodes of the region ® with the exception of
the crack tip node. On excluding the parameters Kland KZ from

these equalities we obtain the desired constraints in the terms
of linear equalities,.

The tailure of crack ftaces to interpenetrate in the vicinity of
crack tip can be expressed as
K, =z 0. (13)

This condition may be converted into the linear inequality for
nodal displacements, with expression (12) being used.

Imposing the complementary constraints on the admissible nodal
*
displacement separates the convex closed subset Vh from the set
* . .
Vh. The elements ot the subset Vh satisfv the asymptotical ex-

pression (12) in the meaning stated above. In accordance with
the complementary constraints method the nonlinear programming
problem (12) is replaced by the following problem

int J (z). (14)
* h
ZGVh

Imposing the complementary constrains on the admissible nodal
displacements was shown to be eguivalent to changing an origi-
nal shape function system. In the moditied svstem the finite
element approximations of the asvmptotical displacement field
(12) obtained with the original shape function svstem are used
1s shape functions different from zero in the vicinity of a
crack tip.

THE COMPUTATIONAL ALGORTTHM

The modification of projected conjugate gradient method sugges-
ted by Bobylev (1987) is used for solving the quadratic prog-
ramming problem (14). That moditfication is different from the
well-known algorithm described by Pshenichny and Danilin (1975)
in the following aspects. Firstly testing the condition of in-
creasing the dimension of a working subspace is done at every
iteration. Secondlyv the linear combination of an antigradient
and the projection of the descent direction of a latest itera-
tion on A new working subspace is used as a descent direction
when the dimension of the working subspace is changed. The com-
putational oxperiments carried out contirm the expedience of
such modification.



A NUMERICAL ANALYSIS

A numper of numerical results regarding the contact problems of
elas§1c bounded bodies with surtface and buried cracks have been
\obt31ped, with proposed technique being used.. this paper, we
descrlbes the results referring to the brittie bounded ody
compressed bv the two elastic bodies as shown in Fig.1.

-
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Fig.1.The svstem of contacting bodies

'he bodies considered occupv the two-dimensional domains

1 2
4] ={ x=1x1.x7)€R : —hISxtshl; —bIszsb? };

I L 2 1 2
= N=(X ,X_)¢R”: h_+k < _+k <x < s ;
( L 1 11752 l‘12"(2 X h1+h2' b15x25b2 '

 § >
0 = X=(x._ ,x SRS - _ = - 4_ 2,
{ X, 1) R : h1 h35x15 h: k21x2 kzzxz' —b’szst }.
The thickness t of all the bodies is assumed to be equal to 1.

'he uniform pressure -q, having the resultant force -Q is ap-
plied on the face x1=h’+h, of the body Qz, and the uniform
pressure a, having the resultant force Q is applied on face

\II"hl'hj of the body Q’.

\t first the case when the isotropic and homogeneous body Q! is
free of cracks was analyvzed.It follows from the obtained re-
sults that non-unitform stress field is formed in the elastic
rmNJQded bodyv being compressed axially by the elastic bodies
making contact with it. The regions of tensile stresses may
“bpear. The tensile stresses at the edge of the contact area
amount to 0.13 of maximum contact pressure value p. This is in
ugregment with the result obtained with Hertzian solution. The
tensile stresses reach their maximum value in the centre of the
bodyv and are normal to the axis of compression. They amount to
1)-1Rp Qnd exceed essentially the same value of half—space,
which is 0.01-0.015p (Cherepanov, 1974). Compressive stresses
come up to their maximum value on contact surfaces. Shearing
stresses attain their maximum value 0.49p in the centre of the
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body. The ratio of maximum value of the tensile stresses and
the tensile stresses reach 0.37.

Thus in this case the most probable opening mode crack initia-
tion region is located in the central part of the body, with
crack imperfections being distributed in the solid uniformly.

Taking into account the results presented above we further on

1
consider the case when the body Q has the crack being located
on the line segment [—l;lJ of the X1—axis. For computational

purpose the following data have been used
b1=b2=b3=h1=h2=h3=h=0.005m.

The materials of all the bodies are the same. Young’s modulus
and Poisson’s ratio are assumed to be 104MPa and 0.23 respecti-
vely.

Fig.2 shows stress intensity factors K1 related to the crack
length (ll=12=l). Curve 1 (where the compressive force is
Q=0.01MN) and curve 2 (Q=0.05MN) conform to the initial gap
being the quadratic function (k =k, =0, k12=k22:0.25'10_2 2y,

Curve 3 (Q=0.1MN) and curve 4 (Q=0.05MN) correspond to the ini-
tial gap being the power function of the tfourth order
-2 -4 . )
(kll—k21—0.625-10 vh kiz'kzz'O)' Fig.3 shows the stress in-
tensity factor K1 as a function of compressive force. Curve 1
{where the crack sizes are l1=12=0,166h) and curve 2
(11=12=O,333h) conform to the initial gap being the quadratic

function. Curve 3 (11=12=0,166h) and curve 4
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Fig.3.The stress intensity
factor K1 as a function

Fig.2.Stress intensity
factors Klrelated

to crack length of compressive force
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(11=L2=O.333h) correspond to the initial gap being the power

function of the fourth order.

The analysis of the obtained results reveals that the cracks
being located in the central part of the compressed body and
being parallel to the compression axis are opening mode cracks.
If a crack tip is placed in the all-roundls compressed region
being located under the contact surface. the crack intensity
tactor K‘ corresponding to this tip increases alongside with

the growing of the compressive load. Hence. when the compressi-
ve load reaches its critical value crack begins growing instab-
ly, and the compressed body tails.

Thus, the brittle bounded bodv compressed axiallv bv elastic
bodies may fail along the planes which are parallel with a com-
pression axis due to an opening mode crack ¢rowing in a tensile
stress region.

CONCLUSION

The compression test carried out with a direct stress machine
is one wayv to determine the strength of such brittle materials
as concrete, pig iron, rock. Results described above show that
due to the contact pressure being distributed uniformlv the

regions of tensile stresses mav originate in a brittle bodv
compressed axiallv, and the test bar mav fail along the plane
which is paraltlel to the compression axis. A real contact

stress distribution obtained bv solving corresvonding contact
problem should be taken into Aaccount in determining the
strength of brittle materials with a compression test.
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