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ABSTRACT

Scattering of body waves, longitudinal and shear, by a normal surface breaking crack has
been studied in this paper. A hybrid method that combines the integral representation of
the scattered field with a finite element discretization of the near-field has been used to
study the crack opening displacement (COD) and the free-surface displacement (SD). It is
shown that both COD and SD are insensitive to the crack-tip field. In addition, at low
frequencies the COD is found to be uniform over most of the crack length and thus can
be approximated by a constant, which may be estimated from far-field observations.
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INTRODUCTION

Problems of elastic wave scattering by surface-breaking and near-surface cracks are of
considerable current interest for ultrasonic nondestructive evaluation. Ultrasonic scattering
by planar cracks near or at the free surface of a semi-infinite elastic isotropic
homogeneous medium has been studied by many authors (Shah et al.. 1985, 1986
Achenbach et al.. 1984; Van der Hijden and Neerhoff, 1984: Shah et al.. 1987; Zhang
and Achenbach, 1988a,b).

In this paper we analyze the problem of body wave (plane longitudinal and shear)
scattering by a surface-breaking crack with particular emphasis on the crack opening
displacement (COD) and the free surface displacement (SD) near the mouth of the crack.
Our object here is to assess the dependence of these quantities on the representation of
the near-the-crack-tip displacement field in a finite element formulation. It is now well
established that in order to capture the crack-tip stress singularily in a finite element
formulation it is necessary to use singular (quarter-point) elements at the tip of the crack.

However, for the scattering problem one is generally interested in the scattered field away

from this region. For this purpose is it still important to capture the crack-tip
singularity? This paper addresses this question.
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FORMULATION AND SOLUTION

Consider a homogeneous, isotropic, and linearly elastic medium with a surface breaking
crack of arbitrary orientation and shape as shown in Fig. 1. This figure shows the
cross-section of the crack in the xz-plane. The stress-free crack occupies the region

(xz) € C, - 0@ <y < o0 The displacement field u (x,y.z;t) at any point (x,y.z) and time
t is taken to be B(x.z)eify‘i“". where w is the circular frequency and 2n/¢ is the

wavelength in the y-direction. In this paper incident plane body waves will be assumed
to be propagating in a vertical plane that makes an angle ¢ with the x-axis. Thus § will
be determined by the type of wave (longitudinal or shear) and the angle its direction of
propagation make with the negative z-axis. This angle will be noted by 6.

The problem of scattering of incident body waves by the crack will be solved by a
hybrid method which combines the advantages of the finite element technique and the
boundary integral method. For this purpose we consider two artificial boundaries C and
B (Fig. 2). The medium is now divided into two regions. The interior region R, is

bounded by B, part of the free surface, and C'. The exterior region R, is bounded by
the free surface and C and extends to infinity in the x and z directions. The area
between C and B is shared by both regions.

Fig. 1. Geometry of the surface breaking crack showing
also the direction of the incident field.

In regions R, and R, the governing equation of elastic motion is written as
Tijj + pw'uj = 0 (i = 1.23) )

where Tj; is the stress tensor. p the mass density and u; the ith displacement component.
Solution to (1) satisfying the stress-free boundary conditions along the surface of the half-
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space and the crack surface is sought.
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Fig. 2. Finite element grids around the crack.

Solution in the Exterior Region Ry

In this region the dispacement is composed of two parts.
()} s) 5
uj u(l + u(l ()

where ui(o) (i = 1,2,3) represents the free field displacement components (the incident
field and its reflection from the free surface) and uis is the scattered field. The
scattered displacement field in R is represented by a surface integral (Khair et al.. 1988).
after dropping the factor elly,

ui(s)(x'. zZ') = [C (GU Tjk'uj Zijk)nkdc (3)

Here Gjj (x.z; x'.2)elfY is the Green’s displacement tensor for the half-space. Zi'k elfY is
the corresponding stress tensor, and ng defines the components of the ouw}ard unit

normal vector to C. The integration along C is carried out in the clockwise direction.
Expressions for G and :): S have been derived before (Khair et al., 1988).
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This region is divided into finite elements having N| number of interior nodes and N
number of boundary nodes. For the finite element representation in region R, the energy
functional is taken to be ' #

1
E-—J'J' [le*-pwzu u* _lJ t Wi et
L% =y . . d
2 1lg, 2 g |te¥B LB -¥B|ds @

where * denotes complex conjugate and T. ¢ are stress and strain vectors defined as,
T = [Tex Tyy. Tzze Tyze Toxe Tuy T
A xx> lyy+ lzz» tyz. Tzx. xy] O

T
€ = [‘xx~ €yy. €220 Eyz. Ezx. exy] 6)

where superscript T denotes transpose. t B and EB denote the traction and displacement

on contour B respectively. It is assumed that the displacement field within an element is
represented in terms of the shape functions ¢y (x.z) and elemental nodel displacements

(e)
ui;! as

n
u;(© - Z ) uge: (i = 1,2.3) )
1=1

The pumber of.nodes ir_x each element is given by n. Ti-(e) and eij(e) are computed by
subs!xluung 7) u.xto .slram-displacemem relations and these, in turn, into the stress-strain
relations.  Substituting these in (4) and taking variation, the equation of motion for

region R| can be written as
u
[Su Sm] 1 0 @
Spr S u ["4Y
BI °BB ~B ~B

Elemental impedance matrix [S]e is given by

(Sle = ” [[Be‘f (D] (Be] - pw? [¢e]T [¢e]]dxdz ©)

Ae
XB is the nodal force vector due to surface tractions on the boundary.

Using the top set of equations in (8 we get
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Matrices [Be] and [D] have been derived before (Khair et al, 1988). Note that in this
derivation use has been made of the equation U (x.y,z) = u (x.2)eify .

Combining (3) and (11) the boundary displacement LJB is found to be

-1
= - S S (0)
) [ (A1) [Su] (SiB] + ABB} W+ O (1
Once {LJB} is found by solving (11), {yl} is found from (10).

In the following we present the results for the COD and z-component of the surface
displacement for incident longitudinal (P) and vertically polarized shear (SV) waves. In
all the numerical results presented it is assumed that { = 0, i.e., the waves are traveling
in the xz-plane. Also, to keep the problem simple the crack is assumed to be planar and
normal to the free surface. Results for cracks of different orientations and for non-
planar cracks will be presented elsewhere.

NUMERICAL RESULTS AND DISCUSSION

The method described above was used to solve body wave (P and SV) scattering by a
normal surface-breaking crack. The attention has been focused on the near-field
displacements as they depend on near-the-crack-tip singular stress distribution. To
examine this dependence the region around the crack was divided into finite elements
with or without using the quarter-point singular elements near the crack tip. The
Poisson’s ratio of the medium is taken to be v = 1/3. Displacements at all the interior

nodes were calculated for different angles of incident using (11). Crack opening
displacements
Az = |ul - ug| (12)
Ay = |u; - u)'(| (13)

were calculated. These are shown in Figs. 3-6 for different frequencies and for angle of
incidence 45°. The lines denote the results obtained by using the crack-tip singular
elements and the points without the use of these elements. As seen from these figures
the COD’s do not depend on the accurate representation of the crack-tip singular stress
field. That the crack-tip field does not significantly influence the scattered field is also
seen from the surface displacement field presented in Figs. 7 and 8. Here the amplitudes
of the vertical surface displacements near the mouth of the crack are presented.

Figures 3-6 also show that at long wavelengths the COD's are nearly constant along most
of the crack length changing rapidly only near the tip. This change is influenced by the
way the crack-tip field is represented in the finite element shape functions in this region.
However, as noted above, this local detailed field does not influence the scattered field
much, even near the mouth of the crack.
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Fig. 4. A, along the crack-length for the same case as in Fig. 3.
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Fig.
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7. Normalized scaltered vertical displacement amplitude near the

mouth of the crack for P wave incident at 45° with the
vertical. Lines show results obtained using the crack-tip
elements and points without them.
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