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ABSTRACT

Modern fractographic research into the old problem of
"Quantitative Fractography" has resulted in new theoretical
developments based on the powerful relationships of stereology
and geometrical probabilities. These efforts have resulted in
an assumption-free, statistically-valid procedure for estimating
the area of any irregular, rough surface.

Most attempts to model the fracture surface are based on the
surface roughness parameter, Ry (=S5, ,./A roj) and its
relationship to the experimentally availa%le profile roughness
parameter, R (=Ltrue/Lpr°j). Theoretical upper-lower bounds to
all Ry ,R, relationships reveal that only one curve, out of a
dozen, lies completely within the limits. Moreover, all known
data points lie closely around this one parametric roughness
curve and within the theoretical limits.

Other procedures for determining Ry include a modified fractal
analysis for both profiles and surfaces which yields the "true"
values of profile length and surface area. Data obtained by
this method are completely compatible with results obtained with
the above parametric roughness egquation.

Applications of these quantitative procedures to the complex
surfaces and profiles of fractured materials have revealed
subtle effects not detectable in any other way. These methods
also make it possible to perform better failure analyses,
develop new fracture resistant materials more expeditiously,
and elucidate the effects on the fracture process due to
mechanical, chemical and thermal environments.

KEYWORDS
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parameters; modified fractal analysis; stereology’ directed
measurements; nonplanar surfaces; vertical sections.
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INTRODUCTION

The prevention, or actually, the minimization and control of
fracture in metals and other structural materials has engaged
the attention of scientists and engineers for many years. As
material specifications and reliability standards are raised,
however, there is a corresponding need for materials with
greater fracture-resisting properties. The efficient develop-
ment of these high-performance alloys requires the ability to
quantify the significant attributes of the fracture process.

Recently there has been a revival of interest in the old problem
of "quantitative fractography". The principal objective is to
describe the features in the fracture surface in terms of their
true areas, sizes, spacings, lengths, orientations and
distributions. However, the jagged, irregular and reentrant
curves and surfaces of metallic materials present seemingly
intractable problems. To accomplish this objective, we need to
know the area of the fracture surface, which leads to the
calculation of the true three-dimensional guantities.

Several factors have played a decisive role in the modern effort
to solve these problems. They are:

(1) The application of the fundamental laws of geometrical
probabilities and the stereological relationships based on
directed measurements.

(2) A generally-valid, linear parametric roughness equation that
provides an estimate of the area of a nonplanar surface of any
configuration, and

(3) The availability of efficient experimental procedures, using
modern image analysis systems with digitizing tablet.

Three experimental approaches have been used extensively in
studies of the fracture surface (Underwood, 1986). They are based
on the SEM fractograph (a projected image) (Broek,1971);
stereophotogrammetry (instrumented stereoscopic viewing)
(Hilliard, 1972); and profilometry (the study of profiles
generated by sections through the fracture surface) (El-
Soudani, 1978). The advantages and disadvantages of each of these
methods have been discussed vigorously in the recent literature
(Bauer and Haller,1981)(Underwood and Banerji, 1987). Although
each method has its limitations, the overwhelming experimental
choice is profilometry (Underwood, 1988) .

Profiles are usually generated by means of vertical sections
through the fracture surface (Underwood and Chakrabortty, 1981).
Not only do the profile characteristics relate geometrically to
those of the surface, but all minutiae of the crack path are
revealed including reentrancies, sub-surface cracking,
transgranular and intergranular behavior, etc. The underlying
microstructure is also revealed vis-a-vis the crack path
(Underwood and Starke,1979). Profiles can also be generated
nondestructively by optical means (Tolansky,1952) or by lines
superimposed over the fracture surface (Wang, et al.,1982). Once
the profile characteristics are known, the true magnitudes of
features in three-dimensional sample space can be calculated. It
is also possible to calculate the true magnitudes by combining
the information from the flat SEM fractograph with the surface
(Rg ) and profile (R_) roughness parameters (Underwood, 1986a).
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in the following discussion, we give some background on
stereological relationships, particularly those involving
directed measurements, and the various roughness parameters.
Then we describe the parametric roughness equations that relate
#. and R . Finally, the modified fractal treatment accorded
fracture profiles and surfaces is reviewed, and the results are
shown to be completely compatible with the parametric analysis.

STEREOLOGICAL BACKGROUND

The quantitative aspects of fractography depend heavily on
stereological equations and the interrelationships between
random and directed measurements. These topics lead to the
subject of roughness parameters and the parametric egquations
for estimating the fracture surface area.

Stereology is a body of methods for characterizing the spatial
geometric properties of microstructures from probabilistic
measurements made on planar sections (Underwood, 1970) or
projections (Underwood, 1972). It should be emphasized that
"random" structures are not necessary for insuring the validity
of stereological relationships. By a "random" configuration we
refer to statistically uniform locational and angular
distributions of features in a microstructure or fracture
surface. If the structure is not random, then random sampling
supplies the necessary element of randomness between structure
and measurement. In either case, the stereological equations
are completely valid.

random Measurements

The basic equations for volumes, suifaces, lines and number are
well-known and have been stated and derived in several trea-
tises. (Underwood,1970)(Weibel,1979)(DeHoff and Rhines, 1968)
(Saltykov,1974). Here, we will merely note that the spatial
quantity sought is usually expressed in terms of the
measurements made on planar sections (the metallographic "plane
of polish").

| f measurements are done manually, the counting measurements are
preferred (Underwood,1985)(DeHoff,1986). Only three types of
counting measurements are required for most calculations: the
point count (P, ); the intersection count (PL); and the area
density count (P,). These types of measurement procedures are
quite efficient and frequently compete favorably in speed and
accuracy with semi-automatic image analysis systems.

ndequate statistical coverage usually requires only a few
placements of the test grid at various locations and angles in
the test plane. The test grid can be marked on a clear plastic
sheet: a square array for the PP—count; a grid of parallel lines
for the P, -count; and a convenient arbitrary test area for the
P, -count.

In principle, random three-dimensional sampling requires section
planes at all possible locations and angles through the sample
being investigated. However, this extensive statistical

coverage is seldom possible or required in practice.
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The important stereological equation for length of line in a
plane, per unit area, is

L, = (%/2) P, (1)
where P, is the total number of intersections of the grid with
the lineal features, divided by the length of the grid lines
(within the selected test area). For example, considering a
crack trace in the plane of polish, L, is the ratio of trace
length, L, _,..., to the test area, A;. This ratio is, of course,
equal to the trace length per unit area.

Equations are also available for the area of a fracture surface.
The general stereological equation for the area of a surface of
any configuration, provided measurements are made randomly, is

Sy, = 2 P (2)

where S, is the surface area per unit volume, and P is the
intersection count with the surface traces, made on one Or more
random test planes through the surface. Although Eq. (2) is wvalid
for any type of surface (oriented, partially-oriented or random),
no information regarding the surface configuration is

forthcoming from S, .

The combination of Egs. (1) and (2) results in an extremely
useful relationship

S, = (4/7) L, (3)

which relates the crack surface area per unit test volume to the
trace length per unit test area.

Directed Measurements

An important complement to random measurements is called
"directed" measurements, or sampling (Saltykov,1974)
(Underwood, 1970) (Underwood, 1987 ). Sections are cut in preferred
directions, and subsequent measurements in these planes may also
be taken in preferred directions. These procedures are
frequently employed with structures having some degree of
preferred orientation in particular directions or planes. This
permits the use of special equations appropriate to the special
measurements employed. The equations for directed measurements
do not supersede the general equations of stereology -- they
complement them and provide directional information rather than
average values.

If directed measurements are used on a crack trace, several
special equations are available. One relationship that involves
projected quantities in a preferred direction is

(LA)proj = (PL)L (4)

where (Lp ), represents the projected length of the crack along
a chosen projection axis, per unit test area, and (P ); is the
nhumber of intersections with the crack trace, per unit length of
a test grid perpendicular to the projection axis. This means that
for any single crack trace without reentrancies, the projected

3394

iength is a constant equal to the intercepted length on the
projection axis. However, if there is significant overlap of the
profile, the increased value of (LA)pro< reflects this fact: An
overlap parameter based on Eg. (4) will be described later in

{he Section on "Crack and Microstructural Parameters".

irected measurements are also used to express the fractional
rength, L, /L, of an irregular curve of length L that is

sriented in a particular direction, L__ (Underwood,1970). A )
parameter that applies to a partially-oriented line in a plane 1s
the degree of orientation, 1112, where the subscripts refer to

iines, 1, in a plane, 2. It is defined (Saltykov,1974) by

(PL)y - (P )

0,

2 (P_.) + 0.571(P. )y

~here (PL)l and (PL)” are directed measurements made ) .
perpendicular (]) and parallel (]|) to the selected orientation
axis. f1,, can vary between limits of O and 1, where (e} )
icpresents no oriented components (a completely random line) and

means a completely oriented line (a straight line parallel to
{he orientation axis). For values in between, the trace can have
any degree of partial orientation and O<:I)L2<:1'

irected measurements also give more details about specific
-urface configurations. Some useful examples are given below.
'he equation for surfaces projected in a particular direction is

(Sv)proj = (P )y (6)

where (Sv)proj is the area of the surface projected tq a chosen
i1ojection plane, divided by the test volume. (P, ), is an
‘ntersection count with the intersection test lines perpendicular
‘o the projection plane.

parameter for partially-oriented surfaces that invokes directed
neasurements is the degree of orientation 23 where the
~ubscripts refer to surfaces, 2, in sample space, 3. Several
. ategories of surfaces have been distinguished (random, planar,
| inear, and planar-linear) (Saltykov,1974), but here we give only
the relationship for partially—oriented planar surfaces

(P,)y - (P

O = (7)

(P )y + (P

where (P ) and (PL)H are analogous to the quantitie§ Qefined in
{.q. (5). The values of f)pl can vary between the limits of O
.nd 1 representing, respectively, complete randomness and
complete orientation. In between, of course, the surfaces are
jartially-oriented and 0< (),,< 1.

ombinations of the above equations frequently prove useful.
ior example, equating (p ), of Egs. (4) and (6) gives

(Sv)proj = (Lh)proj = (8)
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We see that, regardless of complexity, the surface projection
bears a particularly simple relationship to the profile

projection. This equation is also valid for surfaces with or
without overlap.

A special case of Eg. (8) is the completely oriented surface
represented by a flat plane (Underwood, 1988). It has the
minimum area surface when oriented parallel to the projection
plane. In this case we see that

(Sy)lor = (Lpdgyr (9)

where (L,),, is measured according to Eq. (4) on section planes
perpendicular to the surface. The quantities in Eq. (9) have a
fixed value depending, of course, on the dimension of the test

volume. For a test cube of edge length a, (S;),, and (L,), .
equal 1/a.

A related equation pertains to the special case of ruled
surfaces (Underwood, 1988). These are partially-oriented surfaces
that have only one orientation direction, and the surfaces are
generated by the translation of a straight line (in any
direction) parallel to itself. A ruled surface is shown
schematically in Fig. 1. For this case we have

(Sydruiea = (Lp)dy (10)

where (L, ); refers to a trace on a plane perpendicular to the
orientation direction. (S,)_,,.q4 can have any value between 1
and 00, depending on the complexity of the trace. If the ruled
surface is sampled randomly, then Eq.(3) applies.

Fig.1l. A Ruled Surface.

Note that in (S,,L, )-coordinates, Eq. (9) plots as a point,
while Eq. (10) plots as a line. Moreover, this line represents
the minimum possible values of surface area for all given trace
lengths. On the other hand, the maximum values of surface area
correspond to those obtained from Eg. (3). The latter equation
also plots as a straight line and represents the upper 1limit for
surfaces of any configuration, if sampled randomly. It is
important to note that surfaces with random configuration do not
require random sampling. For such surfaces, either directed or
random measurements should give the same value of §,.
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ROUGHNESS PARAMETERS

Leveral types of roughness parameters have been proposed for

profiles and surfaces (Underwoo
¢riterion is based on their sul

irregular curves rand surfaces.

It

d,1984). A major selection
tability for characterizing

is also desirable that they

sxpress roughness well, relate readily to the physical situation,

snd equate simply to spatial qua

«a51ly obtained experimentally

i o]

’

ntities. Because profiles are

is natural that considerable

4ttention has centered on their properties. Roughness Qarameters
for surfaces are not as numerous (Underwood,1987?, possibly
hecause they are too difficult to evaluate experimentally.

“wo roughness parameters have been identified that possess

sutstanding attributes for quantita

the profile roughness parameter Ry
the surface roughness parameter Rg

directly related to the basic s

tive fractography. They are
(Pickens and Gurland, 1976) and
(El1-Soudani, 1978). They are

tereological quantities S, and L,,

respectively. Other parameters have been proposed, and the more
ureful of these will also be discussed.

yrofile Roughness Parameter

The profile roughness parameter is defined as the true profile
tength divided by the projected length, or

R, =L, /L'

(11)

where the prime denotes a projected quantity. The terms-in ]
cally in Fig. 2 for a profile in a

ig. (11) are depicted schemati
vertical section plane. An eas

Y,

direct way to measure the

profile length is to use a digitizing tablet{ otherwise, Eg. (1)
can be used with manual measurements. Experimental values of R
between 1.06 and 2.39 have been reported for a vaFietylof
materials (Underwood and Banerji,1987). R, is a dimensionless

length ratio that can wary bet
configuration and the angular
profile. As used here, the L'

ween

1 andoo. It is independent of

distribution of elements in the

term

is projected in a selected

direction, thus R, requires directed sampling for its evaluation.

:

—_— ——

Fig.2. Profile Through
a Fracture Surface.
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vertical Section

Fig.3. Relationship of Fracture
Surface to Other Quantities.
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Surface Roughness Parameter

Surface parameters that relate to some particular attribute of
the fracture surface may be satisfactory for that restricted
purpose (Underwood,1987). However, a parameter that contains the
fracture surface area is of more general interest. A natural
surface roughness parameter that parallels the profile roughness
parameter is Ry, defined as the true surface S, divided by the
projected area A' according to

Rg = S, / A' . (12)
Since A' is selected arbitrarily and has a constant value, S, is
obtained directly once Ry is known. Ry is a ratio of areas, thus
dimensionless, and can vary between 1 and 02 , depending on the
complexity of the surface. Experimental values of Ry are known
between 1.1 and 2.4 (Underwood, 1988). Ry is independent of
configuration and angular distribution of elements in the
fracture surface.

Fig. 3 illustrates a test volume V, containing a fracture
surface of area S, and depicts the geometrical relationships
between a trace of length L,, projection plane A', projection
line L', and test area A; in a vertical section. It is seen that
Ry and R, are closely related. Since the elements of the fracture
surface are projected in a designated direction to A', we are
concerned here with directed measurements.

Crack and Microstructural Parameters

In addition to the general profile and surface roughness
parameters described above, other parameters have been proposed
for specific applications. Some parameters are based on the
configurational characteristics of the profile; others seek to
describe the relationship of the crack characteristics to a
particular microstructural feature. Examples of these types of
parameters are given below.

The profile configuration parameter, R,, is essentially the ratio
of average peak height, H, to average peak spacing, W. As such,
it is sensitive to variations in the configuration of an irreg-
ular planar curve. The parameter is defined (Behrens,1977) by

J2
Ry = (1/2Lg ){P(y) dy (13)

v
where L, is the (constant) length of the test 1line; P(y) is the
intersection function; and y,,y, are the bounds of the profile
envelope in the y-direction. The working expression can be
written as

R, = (Ay/2Lp) 2(P )y . (14)

where Ay is the (constant) displacement of the horizontal test
line of length L., and 5:(Pi)u is the total number of
intersections of the test line parallel to the orientation axis.
Fig. 4 shows the essential elements of this procedure.

The height-to-width ratio comes up frequently in studies of

fracture surfaces. The quantity usually measured is H/W, the
ratio of the averages, whereas H/W, the average of the ratios,
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i# actually desired. Normally, the lattgr quantity is difficult
and time-consuming to obtain. However, 1n a recent Eﬁudy ot
dimpled rupture in 4340 steels (Banerji,1986), both H/W and g7%
were determined along with R, . As would be expected, R, and H/
vnlues were close (within 13 percent); while H7w_v31ues, on ?he‘
sther hand, were about three times greater than H/W. Thus, it is
important to specify clearly the ratio being used.

Il Projection direction™

o

Horizontal projection line

-ay

Vertical projection line

" e : Fig.5. Projection of Profile
Segments to Vertical

{ ments for Profile v
Fig.4. Measure Projection Line.

configuration Parameter.

)nother roughness parameter, Ry, is based on the.projection of
profile lengths in two orthogonal directions (Wright and
jarlsson,1983). This parameter is defined by

R, = S (Ly")y /XLy (1)

where the subscriptsll and | refer respectively to the projection
directions parallel and perpendicular to a chosen grlentatlon
axis (usually the average crack propagation dirgctlog). Tﬁe
projection of length segments in the parallel dlrectlog, i.e.,
S(L; "), is shown schematically in Fig. 5. Notg that,'ln the
.bsence of overlaps or reentrancies, the denominator 1is a .
constant equal simply to the projected length of the profile in
the perpendicular direction. Alternately, Eg. (15) can‘be
expressed in terms of the intersections with a test grid,
according to Eq. (4), by

R, = 3(P )y / S (Py) 1 (16)

where here the subscripts || and ] refer to directions of the
qrid with respect to the orientation axis. Comparison.of Egs. .
(14) and (16) reveals that the > (P; )y terms are identical, soO 1n
the absence of overlap, R, and R, differ only by a constant
factor, Ay/2.

In the case of overlap, a quantitative parameter may be needed to
cxpress the extent of such events. A simple e*pr9551on that
accounts quantitatively for overlaps, and avoids the
shortcomings of previous offerings, is

RN = R, [1 + F(L{)§" / (L)R°" ] (17)
where Z(L;)gf is the contribution to the'projected 1engthtgue
only to overlaps, and (L')'_‘Ift is the projected 1eng§h of e
profile minus the overlaps. Both qguantities are prOchteQ z
perpendicular to the orientation axis, as indicated in Fig. 3
In the absence of overlap, Eq. (17) reduces to Eq.- (11).
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R

{ Fig.6. Quantities Involved

in the Overlap Correction
- Model.
Net

—«—— Orientation Axis —

The relative projected length due to overlaps can be expressed
in terms of intersections with a vertical grid according to

S(LOL / (L)net = Y (PO /(P (18)

where the number of intersection points in the numerator refer
only to the overlapped portions of the profile, and in the
denominator to the rest of the curve. The quantity in square
brackets in Eg. (17) can also be described as equal to the total
projected length over the apparent projected length

Underwood, 1970) .

Gurland has proposed a crack preference index, G, of great
generality (Pickens and Gurland,1976). It is defined for the i-th
phase by

Gy = Y(Ly)py / Ly (19)

where Z(Li)ph is the combined lengths of the crack path through
the i-th phase, and L, is the total crack length. Thus, this
ratio reveals the fraction of the crack path that passes through
a particular phase. In a study of fatigue cracks in aluminum
alloys (Underwood and Starke, 1979), a modified form of this
parameter was used to determine the fraction of transgranular or
intergranular cracking For grains of size 20 pm, G, ., = 0.63,
and for subgrains of size 2 um, G, ... = 0.39 . The tendency for
the crack to prefer a transgranular path through larger grains
has been noticed in the past. Other useful crack path-
microstructural parameters have been proposed in the literature
and discussed in recent reviews (Underwood and Banerji,b 1987).

PARAMETRIC RELATIONSHIPS

Because of the inherent complexity of fracture surfaces, it is
desirable to introduce the assumption-free, general
relationships of stereology to help solve the problem of
quantifying a fracture surface. This approach is possible
because the two major roughness parameters discussed above,

R, and Ry, are directly related to stereological quantities.
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foughness Parameters from Stereological Quantities

fhe connection of Ry and Ry to their stereological counterparts

5, and L, can be shown directly starting with Eg. (3),

Sy (4/7) L - (3)
feferring to Fig. 3, the surface area per unit volume is

Sy =S, / Vp =5,/ A'h (20)
and the trace length per unit area is

L, = L. / A = L / L'h . (:21.)

substituting these expressions for Sy and L, into Eq. (3) yields
the equivalent equation in terms of roughness parameters

Rg = (4/m) R, - (22)

Because of the stereological origin of this roughness parameter
equation, it is valid for surfaces of any configuration, provided
the surfaces are sampled randomly. Usually, however, these
roughness parameters are used with directed measurements and
different coefficients will apply.

Upper-Lower Bounds to Roughness Parameter Equations

Eg. (22) also applies to random surfaces that are sampled by
directed measurements, because a random surface should give the
same value (statistically speaking) from any direction.
accordingly, for directed measurements perpendicular to the
offective fracture plane, we can write

(RS )ran = (4/4‘-) (RL)_L . (23)

This equation represents a straight line when plotted in (Rg,R; )-—
coordinate space. It gives the maximum possible value of Rg for
any given value of (R )y ,up to and including a surface of
infinite extent.

The minimum values of Ry, for any given values of (R ), , are
obtained from ruled surfaces. In terms of roughness parameters,
Eg. (10) becomes

(RS)ruled = (RL)J. (24)
where the ; refers to a sectioning plane perpendicu}ar to the
linear elements of the ruled surface. When plotted'ln (RS,RL)—
coordinate space, Eqg. (24) represents a stra}ght line 1lying
between (1,1) and (00, o0) with a slope of 45 .

A special case of Eq. (24) is the perfectly oriented surface with

minimum surface area; i.e., a plane. In terms of roughness
parameters, Egq. (9) becomes
(Rs)or = (RL)or ke (25)

Both quantities equal unity when directed measurements are made
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perpendicular to the surface. Since the roughness parameters for
this plane have a fixed value, the coordinates (1,1) plot as a
point and become the origin of the (RS,RL)—coordinate axes.

These two limiting curves -- Egs. (23) and (24) -- enclose an
area in (Rg,R )-coordinate space. The experimental coordinate
points of (Rg,R, ) would be expected to lie only inside this
theoretically permissible region. Fig. 7 shows that this is
indeed the case for all known roughness data points (Underwood,
1988), including those from a computer simulated fracture surface
(Underwood and Banerji,1983).

>* TParametric Relationships
Zece- Ry = (4)w) R
— Ry = (4/m)(R - 1) +1 )
..... (Redeures = (Ri)s
3.04 R, = 1.16 R e

2.5+

2.0 .

I ’ Experimental Data

Surface Roughness Parameter, Rg

= 4340 (1sochronous)
4340 (1sothermal)
4340 R (0), Rg (0)
Al-4% Cu (95% C.L.)
Ti-28% V
Al03-glass (R.T.)
Al1203-glass (1100°C)
Prototypc facet
WC-162Co

e

o
o

e

b

R - o
o= +

x

*

(o]

1.0 13 2.0 2.5
Profile Roughness Parameter, Ry

Fig. 7. Upper-Lower Bounds to (Rg , R )-Parametric
Roughness Equations and Experimental Data Points.

valid Roughness Parametric Equations

The equations for the upper and lower bounds are obtained

readily for the two limiting types of nonplanar surfaces
(Underwood, 1987). It is a more difficult problem to devise a
valid parametric equation for the partially-oriented surfaces
between the two bounds. More than ten attempts to express Ry as a
function of R have been published, but the results show a spread
of about 40 percent (Underwood, 1988). Different models and
assumptions are seen, resulting in different ranges of validity.
Some authors have arrived at basically the same (incorrect)
equation by using the wrong conditions.
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7o help identify the valid equations, the general con@itlons that
apply to these parametric expressions are examined. Since Ry and
1, are defined in terms of directed measurements, it is necessary
that the parametric equations are also based on directed
measurements. The terminal points of the curves must be (1,}) and
(00, 00). Most importantly, the equation line must lie w1th}n the
wrea bounded by the theoretical upper and lower bounds as given
by Egs. (23) and (24).

yive of the ten equations are eliminated because they fail ‘to
wxtend to (oo, o00). The upper end point for most of these curves

was set at Rg = 2, R, = #r/2. This situation probagiy arose
because the difference between S, /A' (= Rg) and_St/A (=2) was
not recognized. S /A' is a stereological_invariant. If, for

cxample, the surface area is doubled, Sc/A' remains cqn;tan? at
2, but the value of Ry is doubled. Moreover, the sp901flqatlon of
. "random" surface as the upper limit, purely on the basis of
configuration, is meaningless. It is the magnitude of the

.urface area that is important, regardless of whether the surface
iz random or not (Underwood,l987).

The most important criterion is that the lines rgpresenting the
parametric equations must lie within the theoretlcally )
permissible area. The only curve that lies entirely w1th}n the
bounds and intersects the (1,1)-origin (Underwood, 1988) 1is

Ry = (4/m IR, - 1] + 1 (26)
which represents a "best" line through the permissible region.
q. (26) appears in Fig. 7 as the heavy central line between the
limit curves. The data points fall satisfactorily around the
cquation line and within the upper-lower bounds .

lecause there have been some misunderstandings about the‘validity
of Eqg. (26), a brief derivation is given here. We require an
equation that represents the gamut of configurations between the
completely-oriented plane and the random fracture surface

(0f infinite extent). Eg. (25) defines the lower point, and

£g. (23) represents the upper point corresponding to the
condition of an infinite surface area. The desired eguation can
be expressed in general form as

S, = K() L, (27)

where the limits of the coefficient are 1 £ K(Q) £ 4/ - K(§) may
be considered to be a function of the degree of orientation.

In order to evaluate K(§1) over the range of partiallyjoriented
structures between the two extremes set up above, we introduce
the intermediate parameter R, defined by

- L')/L, =1 - 1/Rg (28)

R, = (L

f t

with L, and L' as used previously in Eqg. (11). The values of R¢
vary between O (for the oriented case when L, = L') and i (for
the extremely complex trace where L, »L'); thus, 0 % R, = .
Assuming linearity between the two extreme configurations, we
obtain

(K@) - 11 / By = (4/7) - 1 - (29)
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Combining Egs.

Ry = (4/m)[R, - 1] + 1 (
’ 26)

the only param i
etric roughness ;
general conditions giveg above?quatlon that complies with all the

A two-parameter rou

h .
(Underwood, 1986a) . ghness equation has also been proposed

7 It involves e ici
defined by Eq. 5) and has the foigllc1t1y both R, and 1, (as
Ry = {(4/n) - [(4/%) - 1]Q12}RL L 1863

This equation ha

. s the capabilit ;
permissi -2 LY of coverin :
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plified but effective relationship between R. and R. h
5 . has
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ecently (Gokhale
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It is an extensi et
ion of i
apgular variation of the Seriven and
Williams,1965). Ry

: Williams analysi
s

ispzzfiée agd‘surface elements (gcrivgﬁ ::g
Eq.(31) representin pressed in terms of a series i i
P3,31) Iepresenting onily the first term of the serd g
b agreemeﬁt)iln E%IRL is not attained Hg£;§:; Thus the

X 1 s O a. . . = 4
s iy - ;nig ;lgh experimental data points

EQS- (26) or (31) provide estimates of RS - Once RS and RI are
available corrections can be made to measurements from th t
’ S
e fla

SEM fractogra

ph. Example £ i :

features h peoesor Spplications

(Onden ave been given. (Underwood, 1986 e HELIEl Seactune
wood and Banerji,1987). , a) (Underwood, 1986b)

Because he valu t

t es obtained for data points and from equations
important to assess the possible errors that could arise.
question to be answered is the effect of fractal variations

the measured profi
o . :
oty profile lengths. This is discussed in the next

it is
One
on

FRACTALS APPLIED TO FRACTOGRAPHY

As shown in Fig. 7, all k

e, - 7. E nown experimental va

wit depengeﬁzooilgétlng curves. However, theige:xggt i

men D B The accuracy with which L,, and thus éocatlons

boors o arpone ;el e.same_considerations apply to R ir ha?

Epaare et eXtreat10n§th to R, . Because some fr%étSlnce e

Sete b SRE mely %rrggular, they have been in tig

ireogulas curvesaigcggilstlcs. Surprisingly enough V§22322§ed e

i appear to poss -simili

desziooieMindglbrot (Mandelbrot,1952).e$§es§éf TEn of et
pments in this area are presented belowSUlts of current

(Rs 'RL) lie
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28 and 29 and substitu tlllg nt Eqg. 27 gives
5

turrent Investigations

e has been a tremendous surge of research on various
anpects of fractals in materials, fractal studies of fracture are
relatively scarce. Recent reviews (Underwood and Banerji,1986)
{(Underwood and Banerji, 1987) have described the general state of
knowledge in this area, while a few research papers have dealt
gpecifically with fractals in metals (Wright and Karlsson, 1983)
(Chermant, et al.,1987)(Pande, et al.,1987)(Banerji,1988) (Wasén
and Karlsson,1988), ceramics (Mecholsky, et al.,1986)

{Mecholsky, Passoja and Feinberg, 1988), composites(Davidson,1987)
(Feinberg-Ringel,1988)(Drury,1988) and rubber (Stupak and
ponovan, 1988). The relationship of fractal properties to fracture
toughness (Mandelbrot, Passoja and Paullay,b1984) (Richards and
pempsey, 1988), fracture mechanics (Williford,1988)(Rosenfie1d,
1987) and fatigue (Ivanova,et al.,l989)(Banerji,1986) have also

been considered.

Although ther

The central parameter in the fractal treatment of irregular
planar curves is the fractal dimension, D, which appears in the
exponent of the original Richardson-Mandelbrot equation

(Mandelbrot,1982)
L(p) = Lon~° v (32)

where the apparent profile length, L(n), is expressed in terms of
the size of the measuring unit,n . The value of D is obtained
from the linear form of the equation

log L(n) = log L, - (D - 1)logn - (33)

A plot of log L(n) vs logn is called the fractal plot.
A straight 1line (which approaches oo as n approaches 0) is
predicted, yielding a constant value of D.

Instead of a straight line, however, an extensive experimental
study (Banerji and Underwood, 1984) revealed fractal curves with a
reversed sigmoidal shape. An example is given in Fig. 8. These
reversed sigmoidal curves (RSC) show a pronounced asymptotic
trend, tending toward a fixed value of L(n) as n approaches O.
Thus the fractal dimension D does not have a constant value. An
asymptotic 1imit ‘is understandable, of course, because of the
ultimate limitation represented by the size of the atom.
Deviations from linearity were not detected in early work,
primarily because the range in n-sizes (by a factor of only 10 to
20 times) was too small to establish the complete fractal curve
(Underwood and Banerji,1987). In later work, researchers noticed
a tendency toward deviation from a straight line in their fractal
plots, giving rise to such terms as "semi-fractal" (Rigaut, et
al.,1985) or "critical resolution point"” (Paumgartner, et

al.,1981).

Modified Fractal Analysis

In an effort to rectify this situation, a linearization procedure
was proposed (Underwood and Banerji,1986) that not only gives a
constant modified fractal dimension, but also a "true" value of
the profile length, L(0), which corresponds to L(n) as n

approaches O.
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4340 Steel
Tempering Temperature = 700°C
e Tempering Time: 1.5 hrs.

Correlation Coefficient = —0.991

-
»

Proflls Roughness Parameter, R, (n)
5 &

Log-profile roughness parameter, R, (n)

Fractal Dimension, @ =1.079

1.0

¢ so 100 200

= 10 20 _ 3
Measuring Unlt, 7 (um) R, (00)

L
Log-measuring unit, q

Fig.8. Data Points Revealing

a RSC Fractal Plot. Fig.9. RSC Model Showing Upper and

Lower Asymptotic Limits to R n)-

E .
6§3egi;zz ffactal data vere obtained over a range in n of about
et o about 25 times greater than any range previouslOu
e %h us the fgll fractal plot is obtained and clearl o
improvemeni asymp;gtlc behavior at smalln . A significantr Y

was effected by dividi i j
ta comtont) doie e (32)? giVin;ng the profile projected length

R, (n) = ¢cq-(P - 1)
LN n s (34)

Zﬁf p§?f§le fogghness parameter now provides a lower
ymptotic limit which approaches 1 as n approaches @&

The presence of two a i

3 ; : synptotic limits to the RSC i

;inﬁgiézitlon procedure based on a standard treatﬁzizlgi °

stgdiesa Fg;rvgssii co:ﬂon;gcencountered in phase transformation
tuc ” * wS e model adopted wi i

limits of R (0) as n—0,and R (00)—+1 3531—¢oo%th BRypROLe

zzgiiigiegrgigfgiacga% Czﬁves. The general expression for
med in e forward reaction h i i
shape (Underwood and Banerji,1987). It is giveisbs sgmataa

3
Yg = 1 - e >t (35)
ggigisa,and ﬁ.are constants and t is the reaction time. For th
: e reaction (a RSC), we note simply that = ’ o
ki Yg = 1 - ¥¢., which
v = e =tf. (36)
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7o linearize this expression, double logs of both sides are
taken, resulting in
log log (l/yg) = log (0t/2.3) +JBlog G oY

in fractional form yields

(37)

rReplacing t by n and expressing Yy

R () - Ry (e0) R (n) - 1
(38)

y =
"R _(0) - R (00 R, (0) - 1

substitution gives the linear equation for profiles according to

the modified fractal analysis

R (0) - 1
log log —— = C, +plogq 3 (39)
R (n) - 1

analogous to the slope

c. is a constant and ﬁ is the slope,
1 be linear if R, (0) has the

expressed in EQ. (33). The curve wil
correct value. The best value can be determined by iterative

optimization (Banerji, 1988), or graphically, until the plot of
Eqg.(39) is best linearized. It should be noted that RL(O)
represents the "+rue" length of the profile, i.e., as n

approaches O.

In addition to this treatment for RSC profiles, a fractal
equation for irregular surfaces, comparable to that for profiles,
has also been proposed (Underwood and Banerji,1986). Its major
characteristic is that it is based on an area measurement unit n?
rather than a length unit. The development of this new fractal
equation for surfaces leads to a linear form analogous to Eg.(39)

for profiles, such that

R.(0) - 1
log log S = C,+ Tlong = C,+ 2¥10gn - (40)
Rs(r]2 )y -1

Here, the LHS may be plotted against either logn ?(with slope
equal to ¥) or, for convenience, against logn (with slope equal
to 25). The value of RS(O) is estimated by an iterative
optimization procedure similar to that used to determine R, (0).
Furthermore, the surface area obtained from RS(O) represents the
"true" area of the surface, independent of fractal variations in

n*-
Plots of experimental fractal data in Fig. 10 show that Egs.(39)

and (40) are linear over a wide range of n(Underwood and

Banerji,1986). Thus, the £ and 7 slopes are satisfactory
measures of the fractal characteristics of natural RSC profiles

and surfaces.
Modified Fractal Dimensions. If desired,ﬁican be related to the

conventional Mandelbrot fractal dimension, D, for profiles. To
accomplish this, a modified fractal equation for RSC profiles is

needed. This can be expressed as
RL(’])=C3'1—(D‘> B (41)

is the RSC fractal dimension for (linear) profiles.
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(a) Profiles.
(b) Surfaces.

A new fractal equatlo“ COll\paIable to that for pr
’ ofiles was also
. s

develo i ]
ped for ir regular RSC surfaces (Underwood and Banerji 1986)
’ s

It has the form
RS(QZ) - C4 [qZ]-(Ds - 2)/2 (42
where D, is th i |
s e corresponding RSC f i i
C; and C, are constants. To gvaluatzagta;nglgenstgn (aneikey
L 5 - e (absolute)

values of the slo
v pes of Egs. (41) and (42
in Egs.(39) and (40), respectively, reéul%i:;eiﬁquated toffand 4

and D = ﬁ + 1 (43)
Dg 2%+ 2.

i}

(44)

Typlcal values for a p A
( ) se es of 4340 fractured steels give
S L —~ 4,
D, -D I which is very SatlsfaCtOIY from a fractal pOlllt of
view. MOIeOVeI, Dl > 1 and DS> 2, as quu:u:ed by fractal theory.

Fractal Roughness Parameters

The abov
theoretigafieat2§n# of upper-lower bounds defines th
where roughngsg missible region in (RS:RL)—COOrdinai
the locations Ofpiiameter Polnts must lie. It was al < =pace
€ experimental (Rs,RL)—coordinatesgo?gzzd that

depend, amon :

- . g othe

n-size. r things, on the fractal variability of L, with
%

The RSC analysis d ;

X X escribed abov i

indete e circumvent i

and Su;?;gzngg by means of the "true" valuez g?lsrf§§Ctal

physical Validii as expressed by R, (0)and R¢ (0) pAOtlle Length

plot in Fig. 7 (gngf these constants is aferdeé by :ﬁz ?é “Re
. - erwood,1988). Th - s Ry )

e e o f;

xperimental values of (R;,R; ) measuregegtczrfl8S6§§present six

= 0. pm.
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n terms of the "true" values, RL(O) and RS(O),
these same six points appear as filled circles at higher values,
as would be expected. This confirmation of the parametric
roughness equation, EQ. (26), is noteworthy, and helps enhance
the credibility of the modified fractal analysis.

when recalculated i

SUMMARY

A general treatment of fracture surface geometry has been
developed based on the powerful relationships of stereology and
geometrical probabilities. These efforts have resulted in an
assumption-free, statistically-valid procedure for the
quantitative estimation of the magnitude of features in an
irregular, rough, non-analytic surface.

Most attempts to model the fracture surface are based on the
surface Roughness pParameter, Rg, and the linear pProfile Roughness
parameter,R; . Rg contains the fracture surface area and is
relatively inaccessible, while R, is experimentally available
from profiles generated by vertical sections through the fracture

surface.

Theoretical upper-lower bounds to all Rg,Rgp relationships reveal
that only one equation, out of a dozen, lies completely within
the limits. This pParametric Roughness Equation is

R, = (4/m) (R, - 11 +1 .

All known data points --— for metals, ceramics, composites, and a
computer simulated fracture surface -- lie within the bounds,
and cluster closely around the above parametric roughness

equation line.

The roughness parameters Rg and R, enable corrections to be made
to conventional measurements on the flat SEM fractograph

(a projected image) giving the best estimates of the actual
spatial quantities. Corrections of over 100 percent have been

reported.

determinancy in the measured profile
length L, (and thus RL), a modified fractal analysis has been
developed, including a new fractal equation for irregular
surfaces. Moreover, v"true" values of the roughness parameters,
RS(O) and RL(O), are obtained from the modified analysis. These

scale independent parameters provide the best estimates of the
actual profile length and fracture surface area, and conform
well to the above parametric roughness equation.

Because of the fractal in
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