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ABSTRACT

Ultrasonic methods to detect and characterize cracks are discussed with a
view towards the non-destructive determination of the reduction of strength
due to the presence of flaws. The relation between quantitative
ultrasonics and strength considerations is considered in some detail.
Mathematical modelling for the direct problem of scattering of ultrasonic
waves by cracks, as well as for the inverse problem of crack
characterization from scattering data, is reviewed. For a problem of
quasi-static loading, the Mode-I stress intensity factor induced by the
presence of a crack, has been computed directly from the results of a
related inverse scattering problem. The analytical work is based as the
assumption of a perfect crack geometry. The effects of deviations from a
perfect geometry due to near-tip zones of different mechanical properties,
partial crack closure and the presence near the crack tips of discrete
secondary scatterers such as microcracks, voids and inclusions, are also
discussed.
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1. Introduction

Cracks in structural components are undesirable, and one can take the point
of view that any component which contains a detectable crack should be
rejected. Within the theoretical framework of the mechanics of fracture,
this would, however, not be a productive point of view, because not all
cracks are necessarily harmful over the service life of the component. A
more effective approach is to detect and then characterize a crack by a
non-destructive method, i.e., determine its location, size, shape and
orientation. When the geometrical configuration of a crack is known, the
maximum value of the stress intensity factor can be calculated, and the
criticality of the crack can be assessed. An even more desirable result
would be if a non-destructive test would yield direct information on the
maximum value of the stress intensity factor for specified service loads,
without the intermediate step of characterization of the crack geometry.
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Both approaches, with the second being as yet unproven in practical

dpp:irnlinns, require sophisticated methods of quantitative non-destructive
evaluation.

A single crack is only one kind of material discontinuity. Cracks are
particularly objectionable since they are very obvious causes of
c§tastrophic failure, but voids, cavities, inclusions, interfaces
distribution of cracks, or in general terms damaged regions of a éaterial
may have equally deleterious effects on the strength of components. By tﬁe
use ?f appropriate non-destructive evaluation methods it should be possible
to discriminate between a broad spectrum of flaws and to determine the
relevant characteristics of each kind. For purposes of specificity within
the allotted length of this paper, the attention will, however, be
restricted to components containing cracks. ' '

Most methods of non-destructive evaluation provide only limited
information. For strength evaluation it is, however, not good enough just
to detect a flaw or the presence of inferior material properties.
anntitative information is required. This need has given rise to a more
rigorous and fundamental approach to non-destructive evaluation which is
called Quantitative NDE (QNIE).

Nondestructive evaluation (testing) methods include radiography, eddy
current methods, dye penetrants, ultrasonic methods, optical meéhods
thermal wave imaging, x-ray and neutron scattering methods and methoés
based on nuclear magnetic resonance. Each method has its advantages and
disadvantages for particular applications.
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Fig. 1 Range of linear dimensions of material inhomogeneities, and
examination methods, after Héller [1].

Some methods of quantitative non-destructive evaluation are laboratory
mgth?ds, others are already being used extensively in the field. The
distinction is primarily one of resolution of linear dimensions of micro-
structural parameters. The smallest dimensions can be resolved only with
sensitive laboratory equipment. On the other hand macrolevel cracks can be
detected and characterized with robust equipment that can easily be
transported and put in operation. Figure 1, after Héller [1], shows the
range of linear dimensions of various material inhomogeneities in the lower
part, while the upper part lists available examination methods. If we
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restrict our attention to inhomogeneities with dimensions above one micron,
then inclusions, grain sizes, texture, anisotropy and residual stresses
cover more than four orders of magnitude of linear dimensions. It should
be noted that ultrasonic resolutions has come down to microns by gigahertz
ultrasonic microscopy. Ultrasonic scattering becomes effective slightly
below 10 microns in materials with low absorption.

The great advantage of ultrasonic techniques is that they are relatively
simple. Mechanical waves are used to penetrate a material and so
mechanical properties and defects, that are most closely related to useful
life and eventual failure, are measured directly. A considerable fraction
of the research efforts in QNDE is, therefore, concerned with ultrasonic
measurement techniques. This paper will consider only ultrasonic methods
for quantitative non-destructive evaluation. The emphasis will be on
bodies that contain one or more compact flaws, particularly cracks.

A compact flaw acts as a reflector of ultrasonic wave motion. A bigger
flaw reflects more sound, and hence the amplitude of the voltage produced
by a piezoelectric transducer that is exposed to the reflected sound 1is
related to the dimensions of the crack. Unfortunately, quantitative
characterization of a flaw based on amplitude measurements may be very
inaccurate unless the measurement is carefully calibrated. The reason is
that part of the incident energy that insonifies the flaw is scattered
rather than specularly reflected. A calculation of the total fields which
includes scattering effects is rather complicated. Another problem with
amplitude considerations is that damping in the material and scattering by
secondary sources, such as microstructure, microcracks, voids and
inclusions, tend to reduce the measured signals, particularly as the
frequency increases. Hence the productive use of amplitude considerations
requires careful adjustment of the results for the effects mentioned above.

In an alternative approach it is attempted to characterize a flaw on the
basis of measured travel times for signals which travel different paths,
that are related to the geometrical configuration of the flaw. This time
of flight approach, which is an application of elastodynamic ray theory, is
less susceptible to damping effects since these affect wave speeds to a
lesser extent than amplitudes. To be useful the pulses must be quite
short, or the flaws should be relatively large. The pulses that are
generated by mechanisms other than specular reflection may be very small,
sometimes so small that they cannot be distinguished from noise that is
produced in the system, unless sophisticated data processing techniques are
applied.

In general terms, two approaches to ultrasonic flaw detection and
characterization have been taken. The imaging approach seeks to process
the scattered field in such a manner that a visual outline of the object is
produced on a display. The inverse-scattering approach attempts to infer
geometrical characteristics of a flaw from either the angular dependence of
its far-field scattering amplitude at fixed frequency, or from the
frequency dependence of its far-field scattering amplitude at fixed angles.

Imaging is conceptually simple, but difficult to implement with ultrasonic
signals. The basic idea is to collect signals scattered by the flaw into
an experimentally accessible aperture and then to recombine these signals
such that the ones scattered from a particular point on the flaw add
coherently at a unique point on the image. At other points in the image,
these same signals should not add in phase. Not surprisingly, the main
difficulty with imaging is to obtain an acceptable level of resolution. A
number of innovative instruments and signal processing methods have been
developed. An important example is the acoustic microscope. This
instrument was initially developed in the gigahertz frequency regime, where
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the wavelength is on the order of a micrometer and resolution approaches
that of optical microscopes. The acoustic microscope can, however, also
"see” under the surface of a solid, and it can image both microstructure
and flaws. Imaging is an important method of detection and
characterization, but it falls somewhat outside the scope of this paper.
For an interesting discussion of its potential, but also of the current
problems with imaging, we refer to the review paper by Thompson and
Thompson [2].

In experimental work on quantitative flaw definition by the scattered-field
method, either the pulse-echo method with one transducer or the pitch-catch
method with two transducers is used. The transducer(s) may be either in
direct contact with the specimen, or transducer(s) and specimen may be
immersed in a water bath. Most experimental setups include instrumentation
to gate out and spectrum analyze the signal diffracted by a flaw. The raw
scattering data generally need to be corrected for transducer transfer
functions and other characteristics of the system, which have been obtained
on the basis of appropriate calibrations. After processing, amplitudes and
phase functions, are available as functions of the frequency and the
scattering angle. These experimental data can then be directly compared
with theoretical results. For the inverse scattering method, the
experimental data can be interpreted with the aid of analytical methods, to
characterize the scatterer.

In recent years several methods have been developed to investigate
scattering of elastic waves by interior cracks as well as by surface-
breaking cracks, in both the high- and the low-frequency domains. The
appeal of the high-frequency approach is that the probing wavelength is of
the same order of magnitude as the length-dimensions of the crack. This
gives rise to interference phenomena which can easily be detected. The
advantage of the low frequency approach is that useful approximations can
be based on static results. A large body of numerical results has been
developed for the direct problem of elastodynamic scattering by an
inhomogeneity. In particular, several numerical programs based on the use
of the T-matrix method and the boundary element method have been developed.

The solution to the direct scattering problem, that is, the computation of
the field generated when an ultrasonic wave is scattered by a known flaw,
is a necessary preliminary to the solution of the inverse problen, which is
the problem of inferring the geometrical characteristics of an unknown flaw
from either the angular dependence of the amplitude of the scattered far-
field at fixed frequency, or from the frequency dependence of the far-field
amplitude at fixed angle. In recent years solutions to the inverse problem
have been obtained by the use of nonlinear optimization methods.

Other applications of ultrasonic wave methods, e.g., to acoustic emission
techniques and distributed property measurements are not discussed here,
due to length limitations. More complete discussions of ultrasonic QNDE
methods can be found in recent review papers by Thompson and Thompson [2],
Fu [3], and Thompson [4]. The role of elastodynamic scattering problems in
quantitative non-destructive evaluation has also been reviewed by, e.g.,
Gubernatis [5] and Bond et al. [6]. Interesting practical applications
have been discussed by Coffey and Chapman [7].

Section 2 starts the main body of this paper with a discussion of the
relation between quantitative ultrasonics and strength considerations. The
principles and objectives of mathematical modelling both for ultrasonic
wave scattering and for static analysis of the fields of stress and
deformation near the edge of a crack are discussed in Section 3. Sections
4 and 5 are concerned with two methods for the direct scattering problem:
the time domain finite difference method, and ray theory methods.
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Corresponding methods for the inverse problem of crack chaFacterizaFion are
also briefly discussed. Frequency domain techniques are discussed in
Section 6. Most of the results of this Section are based on a .
representation integral for the scattered displacement field. In Sectlon 7
we discuss an inverse method to characterize a crack of genera% shape in an
clastic solid, by the use of ultrasonic crack-scattering data 1in.
conjunction with the integral representation for the scaFtered—fleld. For
4 given set of scattered field data the inverse problem is formulat?d as a
nonlinear optimization problem. For the case of normal incidence discussed
in this paper, the solution gives the location of Fhe crack, and the cra;k—
opening volume induced by the probing ultrasonic field. ?or a problem o
quasi-static loading, the Mode-I stress intensity factor induced by the
presence of the crack has been computed directly from the resglts of a
related inverse scattering problem. Section 8 is concerned with the effect
of near-tip zones of different mechanical properties on the scattered‘
field. Some results for scattering by a partially closed crack are given
in Section 9. Effects of the presence of discrete scatterers suc? as )
microcracks, voids and inclusions near a crack tip are discussed in Section
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Fig. 2 Role of quantitative non-destructive evaluation in the
life-cycle of a component.

2. Strength Considerations

The role of quantitative non-destructive evaluation dufing the various.
stages of the life cycle of a structural component is illustrated ln_Flg.

2. The schematic depiction is meant fo apply to metal compo?ents which are
subjected to cyclic loading, and hence may sustain metal fa?lgue. As ol
indicated in Fig. 1, Quantitative NDE methods should gnter 1n'the mate?la
processing stage, to play a role in maintaining mate¥1a1 quality of primary
products. At this stage QNDE methods ensure that primary pro@ucts d? not
contain cracks or other flaws whose dimensions exceed a certaln specified
level. Plates, sheets and strips are examples of primary metal pro?ucts
that should be inspected and subjected to quality control before being used
for the fabrication of parts. In the next stage, QNDF methods should be
applied to characterize flaws that have been induced in the process of
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fabricating components. The maximum dimensions of such cracks, in
conjunction with the magnitude of the cyclic load, can be used to calculate
the maximum values of corresponding stress intensity factors. Naturally
these maximum values, AK, should be less than the fracture toughness. If
this is indeed the case, then a ¢rack may still propagate, but at a
controlled rate which in principle is predictable. Hence within the
framework of the "fail safe" or 'damage tolerant" philosophy, a part
containing a macroscopic flaw is acceptable if it can be shown that at the
predicted stress levels, the flav will not grow to critical size during the
design lifetime. Reliable quantitative methods of non-destructive in-
service inspection of parts are tlearly essential for a successful
implementation of the damage tolerant philosophy. Flaws which at the time
of in-service inspection are greater in size than consistent with the
design lifetime, must be detected and characterized. On the other hand the
QNDE procedure should not reject components that contain only smaller size
flaws. A part should be returned to service if no flaws are found, or if
it can be shown that the size of a detected flaw is small enough that it
will propagate to failure only over a period substantially larger than the
next inspection interval. Very considerable life cycle cost savings can be
achieved with this "retirement for cause" procedure. Retirement for cause
procedures have been discussed in considerable detail in the literature,
see e.g. Refs.[8]-[9].

Clearly, it is extremely important that QNDE procedures, (for the present
discussion: ultrasonic techniques) can reliably determine the location,
size, shape and orientation of cracks. In the sequel we will discuss the
methods and their mathematical background. A more direct connection skips
the geometrical crack-characterization stage and attempts to directly
determine stress intensity factors under service loads from ultrasonic
scattering data. In the remaincer of this Section we will discuss this
interesting connection between fracture mechanics and scattering of
ultrasonic waves, which was noted by Budiansky and Rice [10].

The incidence of ultrasonic waves on a crack generates stress intensity
factors along the edge of the crack. The calculation of dynamically
induced stress intensity factors is a problem of long-standing interest in
dynamic fracture mechanics, see, e.g., [11].

For the sake of simplicity of eiposition, let us consider a flat crack of
arbitrary shape in the xl,xz-plane, and let a plane longitudinal wave of
the special form

ug(xy,t) = §(t - x3/cy) 1)

be incident on the crack. Here §(+) is the Dirac delta function and c, is
the longitudénal wave speed. Let the corresponding crack-opening volume be
denoted by V' (t). Now, if the incident wave is of the more general form

uy(xy,t) = £(t - x3/c;) H(E - x3/¢p) )

it follows immediately by linear superposition that the corresponding
crack-opening volume may be written as

F 5
v(t) = [ f(t-s)V°(s)ds 3)

o

The asymptotic form of V(t) as time increases, depends on the stress field
corresponding to Eq.(2). If the stress component 0,,(X,,t) which
corresponds to Eq.(2) approaches a finite limit as + o, i.e., as
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lim [-O42p) /ey £ (E-xg/c) = 055 )

to
then V(t) also approaches a finite limit, which justtequals the static
crack-opening volume induced by the static stress 044.

Equation (3) is a convolution integral. It is well known that the Fourier
transform (over time) of (3), which is indicated by a bar, is of the form

V() = V(@) . )

It is also known that the long-time value of a quantity is related to the
value at small w of its Fourier transform. It can be shown that

vSt - lim iw V(w)

w0

- lim iw F(w)V ()
w0

c =6
L st ;. V (w)
M 733 lim iw (6)
w0

Now, if it would be possible to obtain Vs(w) from an ultrasonic test,

then VS¢ corresponding to the static stress a§§ could be obtained directly
from Eq.(6).

Data obtained from ultrasonic tests generally yield displacements (or their
Fourier transforms) at a limited number of points of observation. As shown
in the sequel it is possible to extract crack-opening volumes as functions
of the frequency from measured displacements, on the basis of elastodynamic
modeling formulas. Once a crack-opening volume has been obtained, it is
possible to estimate the maximum value of a related static stress intensity
factor.

The approach is based on a formula stated by Budiansky and O'Connell [12]
which relates the static crack opening volume to the static stress
intensity factor by

st _ 1l-v

1l-v st
Ve -3, 933 gpc [k (2,0)]2a2 (7N

where S is the edge og the crack and p_ is a length parameter of the
crack.Also, k., = KI/a33 is the reduced mode 1 stress-intensity factor.
According to ﬁudiansky and Rice [10] the right hand side of (7) can be
approximated by an expression in terms of the maximum value of kI. This

results in

i YaS
W L e g e ®
or
1/6
_ [2ew vt st
(Kl)max [(l-u)ﬂs ast] 733 (£
33

The Fourier transform of a plane longitudinal wave which is incident on the
crack in an ultrasonic test, may be written as
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ik, x
u, = A(w)e s (10)
1£ Vu(w) is the crack-opening volume corresponding to Eq.(10), it follows
that

T (w) = T (w) /A(w) a1y

By substitution of Eq.(11) into Eq.(6), and subsequent substitution of the

result in Eq.(9) it then follows that (KI)max for a service condition can
be obtained from the ultrasonic test data as

-24CL . 4 ) 1/6 st
R = |pe® 2i2p o0 = %33 (12)
B o0 iwA(w)

In another connection with fracture analysis, ultrasonic methodology for
determining the fracture toughness of structural materials is of high
interest, see [13]-[14]. A major incentive is the need for rapid,
inexpensive, and nondestructive methods for verifying fracture toughness
and related mechanical properties prior to placing critical parts in
service and after the parts have been exposed to service.

Fracture toughness is an extrinsic mechanical property. It is a measure of
a material’s fracture resistance that quantifies the stress intensity at
which a particular size crack becomes unstable and grows catastrophically.
It is known that fracture toughness is governed by microstructure and
morphology in polycrystalline solids. Because the attenuation of
ultrasonic waves is also governed by similar factors, one should expect
correlations between toughness and ultrasonic properties of
polycrystallines.

Prior works have presented empirical evidence of correlations between
ultrasonic attenuation measurements and fracture toughness in
polycrystalline solids. A theoretical basis has been suggested for the
correlations found between ultrasonic attenuation and fracture toughness.

The viability of ultrasonics for verifying fracture toughness of materials
and components is being investigated. Thus far, correlations of ultrasonic
measurements with toughness have been demonstrated only on laboratory
samples of polycrystalline solids. Further work is needed to establish
underlying principles and appropriate approaches for applications to a
variety of materials and hardware configurations.

In still another connection between ultrasonics and fracture, ultrasonic
measurements of asperity contacts on the crack faces have been analyzed to
determine crack tip shielding from the externally applied driving force, by
Buck et al [15].

3. Mathematical Modelling

Mathematical modelling of ultrasonic wave scattering provides valuable
quantitative information for methods to detect and characterize cracks.
Even though both the geometrical configuration and the process of
ultrasonic wave propagation must be simplified to accommodate a
mathematical approach, the characteristic features of the scattering
phenomenon can be maintained. Results obtained by the modelling approach
2id in the design of efficient testing configurations, as well as in the
interpretation of experimental results and field data. Mathematical
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modelling in NDT, what it is and what it does, has been discussed in some
detail by Coffey [16].

Once a mathematical model has been verified by comparisons with a
sufficiently wide range of experimental data, it can play an extremely
important role, in that representative synthetic data can be generated with
very little effort. This is particularly important in the generation of a
knowledge base for an expert system.

In recent years numerous results have become available for fields generated
by scattering of ultrasonic waves by flaws. Solutions are available for
scattering by voids, inclusions, internal cracks, macrocrack-microcrack
configurations, arrays of cracks and surface breaking cracks. Most results
are in the frequency domain, but they can be converted to the time domain
by application of the Fast Fourier Transform. Recently numerical results
have been developed directly in the time domain.

In a homogeneous, isotropic, linearly elastic solid, the components of the
displacement vector are governed by

(A+p)V Yeu + pv2u = pd (13)

where A and p are elastic constants, and p is the mass density. This
equation must be supplemented by appropriate initial and boundary
conditions. The boundary conditions must be satisfied on the external
boundaries of the body and on the faces of the crack.

Analytical and numerical results are generally obtained for a perfect
mathematical crack. The faces of a perfect mathematical crack are smooth
and infinitesimally close, but they are specified not to interact with each
other. From the analytical point of view a perfect mathematical crack is a
surface in space which does not transmit tractions. The model 1is
acceptable for a real crack, provided that the latter's faces are slightly
separated and that the length characterizing crack-face roughness is much
smaller than the dominant wavelengths of an incident pulse of ultrasonic
wave motion.

There are few exact closed-form analytical solutions to elastodynamic
scattering problems. In a rigorous approach, often the best that can be
done is to reduce the mathematical formulation to a form which is suitable
for numerical work. Closed-form solutions can be obtained at high
frequencies (Kirchhoff approximation or geometrical diffraction theory)
[17] or at low frequencies (Rayleigh approximation) [18]. However these
approximations are of limited value for scattering in the mid-frequency
range in which characteristic wavelengths of an incident displacement pulse
are of the same order of magnitude as a characteristic length of the flaw.
In that range it is necessary to use numerical methods; for example,
numerical schemes to solve systems of governing integral equations, finite
difference techniques, finite element techniques, T-matrix methods, etc.
ng?cal of the latter is the work of Visscher [19] and Opsal and Visscher

As shown in Ref.[21], the effect of a crack on an incident field of
ultrasonic wave motion can be nicely displayed in full-field snapshots,
with the aid of time-domain finite difference calculations. Some results
are shown in Section 4. Other results obtained by the finite difference
method can be found in Refs.[22]-[25]. For crack characterization, only
the fields at a few well selected points of observation are, however,
generally required. These are generally more efficiently calculated by the
use of the boundary element method, which can also be used when the crack
is not perfect.
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In the frequency domain, the exact formulation of elastodynamic scattering
problems results in the statement of a set of singular integral equations.
For scattering by cracks, the unknown quantity in the integral equations is
the crack-opening displacement. Generally, the integral equations must be
solved numerically. Two methods can be used to obtain the set of singular
integral equations: Fourier transform techniques and Green’'s functions
methods provide an effective approach.

In recent years numerous results have become available for fields generated
by scattering of ultrasonic waves by cracks. Solutions for two-dimensional
configurations in unbounded bodies have been discussed by Achenbach, et al
[17], who also listed earlier references. The three-dimensional case of
scattering of a plane wave by a penny-shaped crack has been investigated in
Refs.[26]-[30]. Scattering by a crack of elliptical shape was investigated
in Ref.[31]. The more difficult configurations of a surface-breaking and a
sub-surface crack have been comsidered in Refs.[32]-[38]. Three-
dimensional scattering by a surface-breaking crack has been analyzed by
Angel and Achenbach [39] and Budreck and Achenbach [40]. For the surface
breaking crack comparisons betveen the analytical results and experimental
data have been presented by Yev et al. [41], Dong and Adler [42] and Vu and
Kinra [43]. Experimental results for reflection of a surface wave by a
sub-surface crack oriented normal to the free surface were obtained by
Khuri-Yakub et al. [44], who observed very satisfactory agreement with the
theoretical results. Recently, results directly in the time domain have
also been obtained by the boundary element method, see Refs.[45]-[46].

In recent work Achenbach et al [47], analytical modeling has been improved
by including a number of aspects typical of practical configurations.

Thus, it was taken into account that the transmitting and receiving
transducers are often coupled to the specimen by placement in a water bath.
The transmission of the signal from the water to the solid requires careful
investigation. It was also taken into account that only part of the crack
may be illuminated by the incident signal. The relation between the
scattered field and the electrical signal recorded by the receiving
transducer was made part of the overall approach by directly relating this
signal to the crack-opening displacement which is generated by the incident
wave. The crack-opening displacement was computed by the use of the
frequency-domain methods developed earlier. The process of modeling from
the initial electrical pulse to the measured electrical pulse included
conversion to the time-domain by the use of the fast Fourier transform
method. Reference [47] shows results in the time and frequency domains.

Real cracks, particularly fatigue and stress corrosion cracks have rough
faces, which may contact each other. Sometimes there is not a single
crack, but rather a configuration of a principal crack and an adjoining
sattelite crack, e.g., a macrocrack and a neighboring microcrack. It also
frequently happens that other smaller scatterers such as voids and
inclusions are located near a crack. The secondary scattering from these
inhomogeneities will affect the overall scattered field. Still another
complicating factor may be introduced by the presence of small zones of
different material properties at the crack tips. In this paper we report
some analytical results which account for these complicating features of
real cracks, with a view towards predicting their effects in actual testing
situations.

The calculation of the fields of stress and deformation in a cracked body
under static loading conditions, is mathematically almost completely
analogous to scattered field calculations for ultrasonic wave incidence.
From the point of view of fracture, the near-field is of interest while for
ultrasonic scattering the far-field is most relevant. In fracture
mechanics the emphasis is on stress-intensity factors which define the
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fields near the edge of a crack. It is, however, not surprising that the
stress intensity factors generated by static service loads can be related
to the scattered field generated by the incidence of ultrasonic pulses.
This relation, and its relevance to strength assessment of a body
containing a crack is discussed in Ref.[48] and Sections 2 and 7.

4. Time-Domain Finite Difference Calculations

Reference [21] presents solutions to Eq.(1) that have been obtained by the
finite difference method. The finite difference method used is explicit in
time. In Ref.[21], use is made of previously unreported difference
formulations for some of the special nodes contained in the numerical
domain. A radiation condition which allows free transmission of energy
from the numerical domain for body waves as well as surface waves was
successfully employed.

The configuration is shown in Fig. 1 of Ref.[21]. A transducer on the
upper face of the slab generates a transverse wave which propagates towards
the surface-breaking crack. All fields are taken as independent of z, which
reduces the problems to ones of two-dimensional plane-strain scattering.

The transducer has been simulated by choosing the surface tractions in such
a way that they produce a beam of transverse wave motion, of finite width
and finite duration, which traverses the slab at a 45° angle, and is
directed towards the mouth of the surface-breaking crack. The transverse
displacement pulse illustrated in Fig. 1(b) was used. The tractionms
applied at the transducer/slab interface correspond to those for a pulse in
an unbounded medium of the form shown in Fig. 1(b), which passes the
interface "window" and produces tractions along the interface. These are
just the values used in the numerical simulation. Since the plane wave
passes the interface at a 45° angle no shear tractions are induced. A time
delay is incorporated into the incident pulse so that at the onset of the
numerical iterations, displacements and particle velocities may be set to
Zero.

To complete the formulation of the problem, conditions at the ends of the
slabs must be specified. As the slabs are semi-infinite in extent, the
displacement waves are outgoing. Hence, in the truncated numercial domain a
radiation condition is employed.

The numerical results are displayed in two ways, (1) spatial displacement
distributions (snapshots) at a specified time, and (2) time histories of
the normal component of the particle velocity at the midpoint of the
transducer/plate interface. A spatial displacement distribution is
obtained by depicting displacements by vectors emanating from the
corresponding nodal points, but only at nodes where the displacement
magnitude is greater than a specified value. This yields a snapshot of the
displacement distribution generated by scattering of the incident pulse,
both in magnitude and direction. The normal component of the particle
velocity at the midpoint of the transducer/plate interface has been chosen
for the time-history display.

Figure 5 of Ref.[21] compares the time histories of the normal velocity at
the midpoint of the transducer/plate interface, for the cases with and
without a crack. The most obvious differences are the sharp peaks centered
around 30 ps for the plate with a crack. This pulse represents the
reflection of the transverse pulse by the crack faces. The velocity of the
incident pulse caused by the tractions applied at the transducer interface
is represented by the peaks centered around 7.5 ps. A small peak near 25
ps can be identified as the diffraction from the crack tip. The difference
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in arrival times of the two signals can be used to compute the depth of the
crack by a simple formula, see e.g., Refs.[49]-([52].

5. Ray Methods

In ray theory it is assumed that disturbances propagate along straight or
curved rays, and that the interaction of rays with inhomogeneities follows
simple geometrical rules which can be established on the basis of solutions
to canonical problems. If the rules are known, then rays can be traced and
(in principle) the signals that propagate along all rays passing through a
point of observation can be superimposed to yield the complete field. The
geometrical aspects of ray theory have intuitive appeal, and they are
relatively simple. From the mathematical point of view, ray theory gives
an expansion which has asymptotic validity with respect to "high" frequency
or "small" time after arrival of a disturbance.

The scattering of a bundle of rays by a crack-like flaw follows relatively
simple rules. At sufficiently high frequencies, diffraction at certain
points on the crack edge, which have been called the "flash points"”,
produces the dominant part of the scattered field. The flash points emit
bundles of diffracted waves which propagate towards a point of observation.
The basic theory has been presented in Ref.[17].

The theory of elastodynamic crack-edge diffraction is based on the result
that two cones of diffracted rays are generated when a ray carrying a high-
frequency elastic wave strikes the edge of a crack. The inner and outer
cones consist of rays of longitudinal and transverse motion, respectively.
For cracks in elastic solids, the three-dimensional theory of edge
diffraction was discussed by Achenbach et al [17].

Comparison of theoretical ray theory results with experimental results has
been given in Ref.[53].

In the direct problem the incident wave and the geometrical configuration
are known. For a given point of observation the positions of the flash
points on the crack edge can then be determined by geometrical
considerations, and the scattered field can subsequently be determined by
direct ray tracing. If the geometrical configuration is unknown, but
information is available on the diffracted field, an inverse ray tracing
procedure can be used to determine the flash points on the crack edge from
which diffracted signals have emanated.

In recent papers, see e.g.[54], two analytical methods have been developed
to map the edge of a crack by the use of data for diffraction of elastic
waves by the crack-edge. These methods of Ref. [54] are based on
elastodynamic ray theory and the geometrical theory of diffraction, and
they require as input data the arrival times of diffracted ultrasonic
signals. The first method maps flash points on the crack edge by a process
of triangulation with the source and receiver as given vertices of the
triangle. By the use of arrival times at neighboring positions of the
source and/or the receiver, the directions of signal propagation, which
determine the triangle, can be computed. This inverse mapping is global in
the sense that no a-priori knowledge of the location of the crack edge is
necessary. The second method is a local edge mapping which determines
planes relative to a known point close to the crack edge. Each plane
contains a flash point. The envelope of the planes maps an approximation
to the crack edge.

In Ref. [54] the material containing the crack was taken as a homogeneous,

isotropic and linearly elastic solid. More recently, extensions to include
anisotropy of the material have been given in Ref. [55].
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Mathematical details and a fairly detailed error analysis can be found in
fetf.[54]. The reference also includes applications of the methods to
wynthetic data. It is of particular interest that the local mapping
technique allows for an iteration procedure whereby the result of a
computation suggests an improved choice of the base point which in the
subsequent iteration yields a better approximation to the crack edge. A
comparison with experimental data has been given in Ref.[56].

., Frequency-Domain Analysis

|t is a well-known result of classical elastodynamic analysis that the
wcattered field generated by incidence of an ultrasonic wave on an
inhomogeneity in an elastic solid, can be expressed by a representation
integral. The integral, which is defined either over the surface of the
inhomogeneity or over its interior domain, relates the field at a specified
point in the body to the fields on or inside the inhomogeneity, via Green's
function terms in the integrands. In a rigorous approach to the solution
of the scattering problem, the boundary conditions in conjunction with a
limiting process on the surface integral as the field point approaches the
surface of the scatterer, give rise to a set of integral equations for the
unknown fields on the surface of the inhomogeneity. The set of integral
¢quations must generally be solved by a numerical method, such as the
houndary element method, see, e.g. Kitahara et al.[57]. In a related
approximate approach the fields on or in the scatterer are not calculated
rigorously, but for certain special cases (low frequency, weak scatterer,
high frequency) they are approximated for direct use in the representation
integral.

For scattering of time harmonic waves by an inhomogeneity, the field
cxterior to the inhomogeneity may be written as the sum of the incident and
wcattered fields,

u(x) =u (x) +u (x) . (14)

Note that here and in the sequel the time-harmonic term exp(-iwt) is being
omitted. In this Section we will consider two special cases for the
scattering inhomogeneity: an inclusion and a crack.

First scattering by an inclusion. To distinguish the fields outside the
inclusion (in the matrix material) from those inside the inclusion we use
the following notation

matr}x: 5(5), Cp S (15)

c.. .,
ijpq’?

inclusion: u(x), CprCpo Ciqu,p (16)

Here u(x) defines the total displacement field, p is the mass density, and
¢ and c.. are the velocities of longitudinal and transverse waves,
réspectively. The constants [ are the elastic constants which appear
in the generalized form of HookePd 1aw. For an isotropic material we have

C.. = A§..8 + p(6, 6. + &, 6.
1jpq 1 pPq ip Jq 1q Jp
where A and p are Lame’s elastic constants and sij is the Kronecker delta.

) ) 17)

1t has been shown elsewhere, see e.g.[58], that the scattered field at a
position defined by a position vector x in the matrix material may be
expressed as
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u () = [ 6c
v

Uy, (x-€§) du_ (§)
ijpq ij aiq

av(e) + w? [ bp Uy (x-£)u;(£)AV(E), (18)
\Y
where

s , Sp=1p-p , (19a,b)

C.. = C; - C..

ijpq ijpq ijrq
and U, (x-£) is the fundamental solution of elastodynamics for the matrix
material. ~This solution represents the displacement in the x.-direction,
due to a unit load in the x, -direction applied at position x = £. Also, V
is the volume of the inclusion, and repeated indices imply Summation.

Next we consider scattering by a crack. It is well-known, [17], that the
scattered field may be expressed as

Sc ay k(§-§~ )
M@ - - L Gy -—Egg;-——— Bug (£)ng (£)AAE) . (20)

Here S denotes the insonified face of the crack, E(é) is the normal to the
crack plane and Aui(é) is the crack-opening displacement,
Sc... % Sc .-

pug @) = uSSED) - Wi (21)
where §+ and g- are position vectors of corresponding points on the
insonified and shadow faces of the crack. It should be noted that Au. may
equally well be expressed as the discontinuity in the total displacement,
since the incident field is continuous across the crack faces.

A set of boundary integral equations can be derived by substituting Eq.(20)
into Hooke’'s law and by considering the stress free boundary conditions on
the crack faces. In general, these boundary integral equations must be
solved numerically, for example by the boundary element method. Details
can be found in a recent paper by Zhang and Achenbach [59]. Applications
to various kinds of cracks can be found in Refs.[29]-[31], [37]-[38] and
[40].

7. Crack Characterization by Ultrasonic Scattering Methods

In a recent paper, [48], an inverse method has been proposed which employs
ultrasonic crack-scattering data to characterize a crack of general shape
and orientation in a homogeneous, isotropic, linearly elastic solid. The
method is based on the integral representation for the scattered field
given by Eq.(20).

For a crack in the x,x,-plane, and for normal incidence, i.e., the incident
wave propagates in the x3-direction, Eq.(20) may be rewritten as

@ = [ Oy Dy (X903 ()M (22)
where
Dyepn(x-£) = a—i; U g (x-) k220

As noted in the previous section, Uk (x-§) is the displacement at position
x in the direction x, due to a unit force applied in the direction x, at
x=£. Equation (23) %hen implies that -D (x-£) is the displacement
produced at position x in the x -directiéniy by a double force applied at
x=¢ with forces in the xl-direc ion and moment arm in the xm-direction.
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In the far-field (k |§-§| >> 1, a = L,T) and for relatively low frequencies
(kaa << 1, where a 1is a characteristic length dimension of the crack),
Eq.(22) may be simplified to

Sc
W (%) = CyypnDipn(¥Vas (24)
where

Vg = buy(£)A(E) (25)

is the crack-opening volume, and the origin of the coordinate system is
taken at the centroid of the crack. For an isotropic solid C33£m follows
from Eq.(17), and Eq.(22) may be written as

GG = Tyy3(0)Va; (28
where Lk33(§) is defined in Ref.[48].

Physically, the scattered field of Eq.(24) can be thought of as being
produced by three double forces (force and arm in the same direction) in
the x,,x, and x, directions, located at the centroid of the crack, and of
strength AV33, }V33 and (A+2p)V33, respectively.

Now suppose that the three displacement components of the scattered field
have been measured at a point of observation x. If the origin of the
coordinate system is placed on the crack, then the coordinates of the point
of observation become unknown, since the location of the crack is unknown.
The displacements are complex valued, and hence Eq.(26) defines a set of
six nonlinear equations for five unknowns, namely, for the 3 components of
x and the real and imaginary parts of V,,. It follows that Eq.(26) is an
overdetermined set of nonlinear equations. The system can, however, be
solved numerically, as will be discussed next.

First we eliminate V 3 which appears linearly, from the equation for uSe
(x). Substitution o% the result in the remaining four equations gives
w3 (x) u3 (%) Ly 5 ()
2 = _ 1 = 233*=" | 27)
Sc L. ., (%)
uy (x) 133~ L333(§) )

Equations (27) define a system of four equations and three unknowns (the
components of x). The solution is obtained by solving a nonlinear
optimization problem with residuals of the form

Ly33(x)

S
B (0 = Relwy (] - Re|T505 w0 (28)
Loaq(X) i
3= S
g2(5) - Re[ugc(§)] - Re iii;zg; ulc(g) (29)

and two more residuals for the corresponding imaginary parts. The four
residuals gi(x) are minimized in the least squares sense with respect to X,
i.e., we seek

4
Min b g%(g) (30)
x i=1

The nonlinear least squares problem can be solved numerically by the
Levenberg-Marquardt algorithm, as discussed in some detail in Ref.[48].
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Once the three components of x have been obtained, V33 can be calculated
trom Eq.(26). -

As discussed earlier in this paper, the ultimate aim of quantitative non-
destructive evaluation is to obtain information on the residual strength of
components. By combining the information on the crack opening volume,
obtained in the manner described in this section, with the approach of
Section 2, it is possible to estimate the maximum stress intensity factor.
This will require a low frequency limit of the crack-opening volume, as
stated by Eq.(6). Such a low frequency limit may be difficult to obtain
directly from experimental data. The general dependence on frequency as
the limit of zero frequency is approached is, however, known from
analytical results [18], and this should help to determine the required
limit.

Fig. 3 Scattering by a crack with near-tip zones of different
mechanical properties.

8. Effect of Near Tip Zones

Scattering by a crack with regions of different mechanical properties
surrounding its crack tips has been investigated in some detail in
Ref.[61]. The two-dimensional configuration is shown in Fig. 3. To apply
Egs.(18) and (20) to two-dimensional problems, the volume integration in
Eq.(18) becomes an integration over an area A, while the surface
integration over S in Eq. (20) becomes an integration over a crack line T.
In addition the indices range over 1 and 2 only, the deformation is in
plane strain and the fundamental solution is two-dimensional.

It is now not difficult to show that the scattered field may be expressed
as the superposition of Eq.(20) and two integral expressions of the general
form (22) for the two crack-tip regions. Before we give the expressions we
will, however, introduce some simplifications, which are based on the
following order of magnitude observations, see Fig. 3,

((x1 + a)2 + x%}H/d >> 1 (31)
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and

de << 1 ; (32)

where d is a characteristic length of the crack-tip regions. Under these
assumptions, Uik(g-é) in Eq.(18) may be brought outside the integral sign
and written as

Uy (x38) = Uy (x5  2) (33)

We also consider the case that 6Ci. is uniform, and that any variation in
the mass density may be ignored, }1JBY, sp = 0. The total scattered field

may then be expressed as

au., (x;-a) 8u., (x;+a)
S ik =’ 2 ik = i Sc
= e T #8C. . I+ x), (34)
M@ = $Ci5pq T ax, pq*®Cijpa T ox; pg * e ¥
where
du_(£)
e 2 39)
Al,r q

Here Al and Ar are the areas near x; = -a and X = a respectively, see Fig.
3.

Equation (34) would explicitly define the scattered field if the crack

opening displacement, Au., and the displacement gradients, au (g)/agq,
would be known a-priori.” Unfortunately that is not the case.® These
quantities must generally be obtained by a numerical solution of a set of
integral equations that can be derived from the representation integral, as
discussed in Section 6. Such a numerical calculation is, however, very
cumbersome, and we follow, therefore, an alternative approximate method.
This method is valid when the elastic constants of the crack-tip regions
are not too different from those of the matrix material. It is assumed
that for such weak scatterers the contribution of Au, to the integral in
Eq.(20) may be approximated by the crack-opening displacement that would
pertain in the absence of crack-tip regions . Crack opening displacements
for a solitary crack have been calculated, among others, by Zhang and
Achenbach [59].

The approxiTaEe procedure is also followed for the calculation of the
integrals 1’ , defined by Eq.(35). Each displacement gradient in Eq. (11)
then has twgqparts: one for the incident wave field, and one for the field
scattered by the crack in the absence of the crack-tip regions. The
approximation of the field in an inhomogeneity by the field that would
pertain in its absence is essentially the Rayleigh-Gans or Born
approximation. For scattering by an inclusion this approximation has been
found acceptable for weak scatterers, see e.g. Gubernatis et al.[60].

As a final simplification we push the approximation one step further by
including in the near-tip scattered displacement fields only those terms
whose displacement gradients contain square-root singular terms. This
simplification is acceptable for d/a << 1 and k.d << 1. The near-tip
scattered displacements near the right-hand tip ‘are then given by the well-
known formulas



PR R —

K " (n-cosﬁ)cos%ﬂ K~ 1 (2+x+cosﬂ)sin%ﬂ
5} - 2 (5]
B 2p

2n 27

Qe

£ . (36)

GS
11
=)
2
where K; and K. are the Mode-I and Mode-II stress intensity factors at
x, = +a, r is %ﬁe radial distance from the crack-tip, and B is the polar
afigle. For plane strain x = 3 - %u, where v is Poisson’s ratio. The
stress-intensity factors K and K for the crack under the influence of an

incident wave must also be numerically calculated by the same method as
Aui, see Ref.[59].

(n-cosﬁ)sin%ﬁ (2-n—cosﬁ)cos§ﬁ

Substitution of Eq.(36) into Eq.(35) and subsequent integration yields

-K] (x-7/5) ,p=q-=1 .
r
s 1 (2a0)" Kl (s +13/5) ,p=1,q=2 ,
=5 s (37)
ke K -3/5) ,p=2,a=1,
K] (x-3/5) ,p=2,a-1,

where the superscript "S" indicates the scattered-field contribution. The
results for the left crack-tip region have similar forms

For an incident plane longitudinal wave of the form

uj = U {iiﬁi exp[iky (x;sing + x,cos4)] (8

where U, is the amplitude and ¢ is the angle of incidence with the xz-axis,
the con%ribution of the incident field to (35) is

sin?¢ ,  pP=q=1

rI _ . 2 ¢ g .

Ipq = 1kLULnd exp(lkLa sing) sin(24)/2 , P*q (39)
cos?¢ , P=4q=2

The results of Ref.[61] suggest that for an incident longitudinal wave the
effect of near-tip regions is negligible for ¢ < 30°, because the
scattering by the near tip regions is dominated by crack scattering. Near
¢ ~ 47° the effect is of some significance, and it becomes more important
as ¢ increases beyond 60°, because both scattering effects become of the
same order of magnitude. The bdackscattering from the crack becomes very
small for larger values of ¢, and hence, from the practical point of view
it may be very difficult to measure any backscattering at all. For an
incident transverse wave the largest effect is observed near ¢ = 35°, where
the near-tip regions cause an increase in the scattered field of about 11%.

9. Scattering by a Partially Closed Crack

The perfect mathematical crack model is acceptable for a real crack with
slightly separated crack faces, and provided that the length characterizing
crack-face roughness is much smaller than the dominant wave length of the
incident pulse of ultrasonic wave motion. If the crack faces are in
contact, and the crack is actually partially closed, the model must be
adjusted. In this section we consider the case that the crack is tightly
closed over a segment of the crack-surface, so that it can be represented
by a configuration of two neighboring cracks.

A mathematical treatment of scattering by a two-dimensional configuration
of neighboring cracks has been presented by Zhang and Achenbach [59]. The
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results of that paper show that the backscattered displacement is
considerably smaller for the partially closed crack. Other results on the
cffect of crack-face contact on the reflection and scattering of ultrasonic
waves can be found in Refs.[61]-[65].

10. The Effects of Near-Tip Satellite Scatterers

Finally, we consider two-dimensional configurations consisting of a
principal crack and either a near-tip microcrack, a microvoid or a micro-
inclusion. Scattering of ultrasonic waves by such a composite
configuration can also be investigated by reducing the problem formulation
to a set of singular integral equations, and by subsequently solving these
equations by the use of the boundary element method. Results for the
backscattered displacement for normal incidence of a longitudinal wave have
been presented in Ref.[61], for dimensions of the satellite scatterer which
are relatively small as compared to the length of the crack (b/a = 0.05).
The difference between the scattered fields appears to be insignificant
except when the satellite scatterer would be located very close to the
crack tip. Of course, if there is a multitude of satellite scatterers. the
backscattered field may become affected in a significant manner.

11. Concluding Comments

Fracture mechanics, or in a more general sense failure mechanics, has made
great strides in the prediction of the integrity of structural components.
The advances in methods for quantitative strength prediction will, however,
not reach their full potential until reliable non-destructive methods are
fully utilized to assess the material state and characterize internal
flaws, for primary products, fabricated components, and for in service
conditions.

This paper has discussed some of the ultrasonic methods that are currently
available, or that are in an advanced research state, particularly with
regard to strength assessment of bodies that may contain cracks.
Particular attention was devoted to direct links between quantitative
ultrasonics and strength considerations. Some topics that are just started
to be investigated have, however, not been discussed in great detail.
Among these we mention expert systems for flaw detection and
characterization. Research in this area integrates sensor development,
predictive failure analysis and decision making procedures, based on
artificial intelligence and expert systems. It is expected that
mathematical modelling and analytical results will play an important role
in the development of knowledge bases for expert systems.

We conclude this paper with a comment on the concept of integrated life
cycle engineering which places quantitative ultrasonics and fracture
mechanics, together with design methodology and manufacturing methods in
the much broader context of the life cycle of components and structures.
The aim of integrated life cycle engineering is to develop an integrated
approach towards design and manufacturing based on simultaneous
optimization of product performance, manufacturability, reliability,
maintainability and life cycle costs during the design development. A
reliable method for designed-in structural integrity is an important
component of life cycle engineering. The method should include ways for
the designer to deal systematically and coherently with stress analysis,
critical flaw concepts and flaw detection and characterization, NDE
inspectivity, overall design reliability and maintainability, in-service
inspection and rational trade-offs between overall reliability and life
cycle costs. Quantitative non-destructive evaluation provides the
measurement tools and techniques for inspections at various stages of
processing, manufacturing and service. Probability of detection models,
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smart sensors, automated inspection procedures, methods to characterize
imperfections and retirement for cause procedures play essential roles. It
is hoped that this paper has illustrated the importance of incorporating
QNDE methodology in the integrated life cycle engineering approach.
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