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ABSTRACT

The aim of this paper is to present briefly some experimental
results obtained from gquantitative fractographic methods in
order to show what this technic can bring to fracture mechanic
investigations.
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INTRODUCTION

progress in the field of fracture mechanics requires a better
understanding of the behaviour of materials to rupture. But ex-
perimental results and theoretical models proposed are not al-
ways sufficient to enable a correct interpretation of the mecha-
nical results if the morphology and features of fracture are not
known sufficiently well. This can be done by using quantitative
fractography which is based on the same principle as quantita-
tive image analysis, but which works on non-planar surfaces. Af-
ter having chosen the correct direction of observation, it is
then possible to describe quantitatively the morphology of a
fracture either from fractured surfaces or from fracture pro-
files or even from deformed or partially fractured plane sec-—
tions. This brings some quantitative microscopical information
to the mechanical engineers. Connected with mechanical test re-
sults, it allows one to propose and to describe mechanisms of
fracture of materials.
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The aim of this short paper is only to show what quantitative
fractography can bring in the field of fracture mechanics. We
shall give briefly some examples obtained from image analysis of
fractured surfaces, then of profiles and finally of polished
sections of deformed and/or partially fractured materials. For
general information on quantitative fractography, the reader can
refer to El-Soudani (1974, 1978), Coster et al. (1979, 1983) and
Underwood (1987).

FRACTURE FEATURES ANALYSIS

Presently fractured surface features cannot be investigated
quantitatively with automatic image analyzers as it is necessary
to differentiate the fracture features : brittle, ductile or
intergranular. We can use digitalization table as only the human
eye is capable of determining rapidly the nature of the features
encountered. 1In these conditions, as we work on a 2 dimensional
projected image, classical methods of quantitative metallography
can be used to investigate these features. The microprocessor is
thus programmed to calculate the principal fundamental parame-
ters, such as S;, the fractured surface area ; L, , the specific
perimeter ; N, , the connectivity number in R2?, which characte-
rizes each feature in terms of coordinates of their own contour
and this with respect to a predetermined frame of measurements.

A brittle-ductile transition of two steels was determined from
Charpy V notch specimens fractured by an impact tester (Lavolé,
1981). The first steel, noted FE, is a soft ferrito-pearlitic
steel, whereas the second one, noted 30, is a Cr-Mo steel. Fi-
gure 1 presents 2 micrographs of surfaces fractured at -60°C and
+ 80°C of the FE steel and the curves of the changes in the pro-

portion of brittle fracture, S;, with test temperature for the
two steel grades. Comparisons are given with results obtained
from IRSID method (measurement of the crystallinity ratio) and
with energy method giving the ratio of brittle fracture X measu-
red during Charpy test from totally ductile or brittle fracture
energy and experimental energy. A good correlation is also ob-
tained between the proportion of brittle fracture measured by
image analysis methods and the ratio between the brittle energy
and the total energy (fig. 2). From L’, (projection of the spe-
cific perimeter L,) and the linear roughness (Coster et al.,
1985), it is also possible to calculate the mean free path,
L,, in the brittle fracture. When L, is plotted as a function of
the test temperature, we observe a sharp decrease in the size of
the brittle regions at the ductile-brittle transition tempera-
ture for the FE grade and a less pronounced decrease for the 30
grade (fig. 3).
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times greater than that in the bulk material. All these largest

grains are fractured : they are the sites for the initiation of
the fracture (Lavolé, 1981).

In the'case of polyphased materials, it is possible to obtain
automatically quantitative information of the different frac-
tured components when the automatic image analyzer is interfaced

with scanning electron micros
) cope and X Ra spect
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F%g.4 : Distribution curves of WC crystals on fractured (doted
lines) énd polished WC -15wt % Co specimens of three different
mean grain sizes : S, M, L.
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PROFILE ANALYSIS

several presentations have been made during ICF-7 on profile and
roughness analyses. It has been shown that it can lead to linear

and surface parameters, R or Ry, and to fractal dimension, D,
(see for example : Underwood, 1987 ; Underwood et al., 1986).

Fractal concept (Mandelbrot, 1977, 1983) is used more and more,
put one of the problems encountered is to interpret the exact
meaning of the numbers obtained and of their change ! Neverthe-
Jess correlation between morphological characteristics of a ma-
terial and its fractal dimension exist and can be shown.

To investigate a profile it is necessary to polish a section of
a fractured specimen, taking care not to damage the fracture
profile, using nickel deposit for example. In some cases, au-
thors have used replica of the fractured surfaces and they have
cut it using a microtome in order to reconstruct the fracture
surface from serial sectioning (Bauer et al., 1981) . Then it is
possible to analyze such profiles by using either the covering
method of Minkowsky with an automatic image analyzer (Coster et
al., 1978)or the divider method of Mandelbrot-Richardson with a
digitalization table (Coster et al., 1980).

The fracture profiles of bend specimens of white lamellar cast
iron have been thus investigated. These materials present imbri-
cated structures : a microstructure (eutectic lamellae) and a
macrostructure (eutectic cells) (fig.5) . The cell size (~ 80pm),
the interlamellar spacing (3 pm) and the cementite thickness
(1.8 pm) were determined using a method based on the properties
of angular variograms and covariance (Camard et al., 1978) . The
linear roughness and fractal plots for surfaces fractured in
tension are also shown. We note sharp peaks corresponding to va-
lues of H close to 2.5, 4.5 and 80 pm, values which, in fact,
correspond to the specific values of the micro- and macrostruc-
ture of this material. The lamellar structure and the cells size
both influence the direction of crack propagation.

such roughness or fractal analyses can be also used to predict
values of some mechanical parameters. If you establish the chan-
ge in the roughness or in the fractal dimension as a function of
the crack propagation velocity, it is possible to predict this
parameter on a part fractured in service. This has been done in
the case of steels employed for aeronautical parts : D and R,
were measured on specimens fractured under stress corrosion at
different known velocities (fig. 6). A good order of magnitude
has been obtained for a part fractured in service. This is an
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Fig.5: Fracture path on the tension surface for a white lamellar

cast iron and change in the roughness, R , and in the fractal
dimension, D, as a function of the size of the divider, H.

important result as it makes it possible to investigate the
fracture of engineering structures in service. It is also to be

noted that such profiles can be also characterized by Fourier
analysis (Passoja et al., 1978, 1981).
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Fig. 6 : Changes in the roughness, R, and in the fractal dimen-
sion, D, as a function of the crack propagation velocity, v, in

the case of 35 NCD 16 steel specimens of different orientations,
fractured under stress corrosion.

DEFORMED OR PARTIALLY FRACTURED MATERIALS ANALYSIS
It is possible to apply directly quantitative metallographic
techniques, however, to heavily deformed or partially fractured
materials, if a polished section can be prepared which reveals
features characteristic of the deformation or of the cracking,
or if the treatment causes a change in the morphology.

For example the number of microcracks per

unit surface area,
their total

length and degree of orientation have been obtained
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sure from materials with a perfectly controlled microstructure.
CONCLUSION

The different examples presented here show that quantitative
fractography can bring important quantitative information from
the microscopical point of view. In order to complete these
examples, it must be noted that such type of information can al-
so be obtained sometimes from other techniques than quantitative
image analysis, such as Auger spectrometry, Fourier ‘analysis,...
and that models and fracture simulations from random processes
can also be used (Coster et al., 1985).
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