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ABSTRACT

In this paper we present methods of quantitative fractography -
morphological quantification of the fracture, profilometric ana-
lysis, simulation of fractures - using the mathematical morpho-
gy concepts and which can be used with automatic image analy-
zers. The results obtained bring fracture microstructural infor-
mation to mechanical engineers investigating fracture mechanics.
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INTRODUCTION

With the development of automatic image analyzers, quantitative
image analysis is becoming increasingly apparent in various
ccientific fields and in particular for quantitative studies of
fracture of materials, known as quantitative fractography. More-
over mathematical morphology is a privileged tool for image pro-
cessing and analysis. The resources of mathematical morphology
can be used for investigations in quantitative fractography. The
scope of this paper is to present what mathematical morphology
can bring to quantify and to investigate non-planar surfaces.

DIFFERENT TYPES OF ANALYSIS IN QUANTITATIVE FRACTOGRAPHY
In quantitative fractography there are two centres of interest.
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The first one is related either to the fracture feature or to
the nature of the phases encountered on the fracture, from which
it is necessary to estimate their size and importance.The featu-
res characterization 1is obtained from a projected image and not
on the surface itself. To have access to parameters on the sur-
face, we must use stereometric relationships, (El Soudani, 1974;
Coster et al., 1983 ; Underwood, 1987). These stereometric rela-
tionships use parameters characteristic of the fracture morpho-
logy. The second one corresponds to the morphological investiga-
tion or pattern recognition of fracture. In these .conditions, we
have to quantitatively characterize the fractured surface irres-
pective of the nature of the fracture features. In this paper
only this second point will be taken into consideration.

MORPHOLOGICAL QUANTIFICATION OF THE FRACTURE

As for shape investigations of objects, morphology of the frac-
tured surface can be described either from dimensionless parame-
ters, as the linear or surface roughness (Coster et al., 1983 ;
Underwood, 1987 ; Coster et al., 1985), or from functions obtai-
ned by harmonic analysis (Passoja et al., 1978 ; 1981), by frac-
tal analysis (Mandelbrot et al.,1984) or by mathematical morpho-
logy which then becomes only a support for the fractal analysis
(Coster et al., 1978). Beucher and Hersant (1978) have developed
an automatic method allowing to reconstruct the fracture surface
of steels, but it is very time consuming and can be applied only
with brittle fractures with facets. So morphological analysis of
fractured surfaces can be investigated generally either from
stereoscopic views (Bauer et al., 1981) or from fracture profi-
les, obtained by intersecting the surface of fracture by a per-
pendicular plane. In practice this last method is the most often
used. Although profilometric analysis has firstly been developed
with morphological parameters similar to shape factors, our in-
vestigation will be restricted to the profilometric analysis
using mathematical morphology concepts. Then we will discuss the
simulation methods using mathematical morphology.

PROFILOMETRIC ANALYSIS BY MATHEMATICAL MORPHOLOGY

Profilometric analysis by mathematical morphology can be divided
in two classes : methods of fractal or of granulometry type.

Methods of fractal type

Two methods will be presented, the Minkowski method and the in-
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creasing size boxes method.

a. Minkowski method

The fractal methods have been the first to be developei azﬁ
used (Coster et al., 1978). The convergence-between fracta tﬁ d
thods and mathematical morphology was unavoidable a§ the me -o

to determine the fractal dimension of a 1in? by dlS¥ coYerlgg
is nothing else than the use of the dilation of this llni- Y
disks of increasing size (Fig. 1), followed by the calcu%i tog
the approximated perimeter from the measure of the dilate

is called Minkowski method (Mandelbrot,
is given by (X
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surface. This method o
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hein; the size of the dilation D for the fracture line 9X)
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This equation, similar to that of Santalo (1953), ?ece551t2§?s
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fracture profile 9X, followed by a
nstruction of the ske-
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sure, F, of size X on the
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Fig. 1 : Covering method of Minkowski.
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Fig. 2 : Example of different stages of the Minkowski method
adapted by mathematical morphology : a) profile of steel rupture
surface ; b) closed 1line, using closure step H of 20 pixels,
c) closed and skeletonized line in the eroded frame.

L, (x,9Y)
R (A,3\) = O

With this method L, (A,3Y) is obtained by numbering the pixels of
the closed, skeletonized and clipped line. This method has been
used many times (see for example Lavolé, 1981 ; Coster et al.,
1980). 1Its allows to calculate the fractal dimension, D, either
from the derivative of the bilogarithmic curve, according to :

dlog R, (X,0Y)
Pe=g = s o
dlog X
or by adjustment according to the square least method to obtain
the mean fractal dimension. This last method has been utilized
to investigate ruptures of steels under stress corrosion or rup-
tures of cold-worked brasses (Chermant et al., 1987a & b).

Recently this method has been improved. In these papers, all the
morphological transformations were Euclidean type and it is the
reason why measurements on the transformed profile are underta-
ken in an eroded frame (theorem of the frame of measurements,
(Coster et al., 1985 ; Serra, 1982)). The use of geodesic trans-
formations allows to preserve the initial size of the frame of
measurements (Lantuejoul et al., 1984). The set Y is then writ-
ten :

Y = sq, [(F} (3x))°]
This improvement has been also used for the investigation of the

rupture of brass specinens in correlation with their cold-worked
state (Chermant et al., 1987b), (Fig. 3).
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Fig. 3 : a) Video image with the digitized line profile for a
cold worked brass; video image with the digitized and skeletoni-
zed line profile obtained after closing by an hexagon of size 15
pixels according to the Euclidean (b) and geodesic space (cC)-.

b. Increasing box method

The same authors have proposed to use an other method, called
method of increasing boxes, which is also of fractal type. Con-

sider Y € 8X and B (X)) a box centered on y and X the fractured
material. The prlnc1ple of increasing box method is to follow

the perimeter and area evolution of X N B (X) when X increases.
The algorithm, illustrated on figure 4, is the following :

; . A
- box construction by dilation : By(A) = pM(y € 99X}
- intersection : Y(X) = X N B (X) ; Y (x) = 90X N B, (X) N
- measurements : L, (Y,X) = meas dY (X)) ; A(Y,)) = meas Y(X)

The evolution of these parameters is analyzed by fractal plét.
l.ike for roughness investigations, the slope gives information
on the morphology of the fracture (Fig. 5). In Chermant et al.
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Fig. 4 : Video image with a box Fig. 5 : Fractal plot using

(size 15) centered on the frac- increasing box sizes, X, with
ture line and intersected by A(Y,>) : surfaces ar?a of the
the nickel phase, deposited on boxes ; L, (Y,A) = perimeter of

the fracture on the cold-worked the boxes.
brass specimen.
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(1987b) the method of Minkowski and of increasing boxes have
been compared : the influence of the method on the results has
been shown and the differences interpreted.

Methods of granulometry type

Mathematical morphology allows to characterize the fracture pro-
files by methods of granulometry type. Because linear roughness,
R, (9X), is insufficient to describe profiles, Serra (1984) has
proposed another parameter : the microroughness index R, (8X) .
The microroughnesses lead on the profile to low curvature radii.
To access to these microroughnesses, we can consider the comple-
mentary set (dX°) to the fracture line. A line of analysis will

form small segments at a level with these microroughnesses. The
knowledge of the density in number of these segments, £(9X°,2),
will inform on these microroughnesses. This granulometric func-
tion is obtained from the linear eroded of size £ by a classic
way (Coster et al., 1985), (Serra, 1982) (Fig. 6). In so far as
¢ is small and assuming that dX possesses curvature radii finite
at any point, there exists the relation (with du the elementary

arc on 98X, R the curvature radii and H the mean curvature) :

(i

£ du £
f(X’XC r‘e) = .[ - _
oX RZ BHZ

8 L, (9X) =
This result is interesting : it shows that the histogram f(£) is
proportional to £ for small values of £. Now if we suppose that

the fracture profile possesses angulous points, the histogram
will not go through the origin (Fig. 7) and we will have :

£ -
£(X,X°,2) = k + 5 H2 = k + R, (9X)

Serra proposed to take H as parameter to describe the micro-
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Fig. 6 : Fracture profile and Fig. 7: Theoretical histograms
analysis line A : determination of f(£), with absences (a) or
of the chord in X and in X°. presence (b)of angulous points
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roughness. The value of k can in fact be biased by the noice
which is added wup to the angularities.This method has not pre-
sently been applied to fracture profile investigations. Never-—
theless it gives nice results to investigate microroughness of
particles (Gougeon, 1988).

QUANTITATIVE FRACTOGRAPHY AND SIMULATION

Tt is not always easy to interpret results obtained from gquanti-
tative fractography, in particular for the morphology of frac-
ture line. There are guide lines which enable prediction of the
morphology as a function of the mechanical behaviour of the ma-
terial before and during fracture. In attempting to describe re-
sults one solution consists of constructing theoretical models,
for which one has fixed a priori the deformation laws and which
can be simulated on automatic apparatus. In this section we will
focus only with simulations which use mathematical morphology.

Chermant et al. (1983) proposed a model of simulation for brit-
tle fracture of polycrystalline mosaic, simulated by a Voronoi
partition constructed from a Poisson point process (i.e. a ran-
dom set of points according to a given density), using the ske-
leton by influence zone (SKIZ) of this set of points. To simula-
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Fig.8 : Simulation of brittle fracture by Voronoi partition : a)
setting path of crack propagation (lines F, and F,) i b) recon-
struction of grains intersected by line F, ; ¢©) reconstruction
of grains intersected by line F, and/or line F, (black grains
are common to both lines); d) final profile of brittle fracture.
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te a fracture path (Fig. 8) on a Voronoi partition (in memory
M1), the position of the mean direction of crack is defined by
tracing a line, F,;, (in MO) parallel to its X axis. The inter-
section between MO and M1l provides segments from which the
grains intersected by this line can be reconstructed. According
to the initial hypothesis the grains will be either circumvented
or traversed by the fracture. As selection criterium between
trans- or intergranular fracture for a particular grain, we have
chosen a parameter A, related to the grain size in the direction
perpendicular to the fracture and to its position with respect
to the line in the same direction, such that all the grains
intersected by the line F, with points of height F,+A are consi-
dered to be fractured transgranularly. These missing grains are
replaced by a transgranular fracture line. After dilation the
upper contour represents the fracture profile. The influence of
the frame of measurements on the profilometric analysis has thus
been investigated using this type of simulation, as well as 1li-
near roughness, R , and fractal dimension, D, as a function of
the size, D, of the Voronoi partition (Fig. 9).

Ductile fracture has also been simulated in setting, on a width,
A, of the materials, Poisson points which represent the cavities
of plastic flow (Lavolé, 1981). Starting from the neighbouring
point from one of the side of the measurement frame, one joints
step by step the points which are located the closest with each
other. This process stops when the opposite side of the frame is
reached. Neighbouring points are obtained by dilation operation.

Similar procedure has been proposed by Osmont et al. (1987) to
simulate crack propagation in porous materials. The starting
point for this model is to consider the true and un-damaged
structure of the investigated material (Fig.10a). These authors
assume that the fracture of the material is brittle and that
crack propagation results from the principle of minimum energy
consumption. As pore crossing by the crack front requires no

R
D —p

10 15 20 [» P gpe—"

Fig. 9 : Change in R and D as a function of the size D of the
Voronoi partition (in picture point).
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Fig. 10 : a) Video image of polycrystalline graphite where the
pores appear in white ; b) set of the geodesic paths ; c) simu-
lated crack with respect to pores, after a clipping conditional
skeleton of the image b (from Osmont et al., 1987) .

energy, it is expected that the crack path will preferably go
through the pores. This hypothesis can be simulated by mathema-
“ical morphology in using the geodesic propagation (Lantuejoul
et _al., 1984) with a crack velocity of finite value in the mate-
rial and infinite in the pores. The result can be interpreted in
terms of geodesic distance, 4, (x,y), between the initial poin?,
x, and the finishing point in the measurement window, y. This
result is compared to the case of a bulk material for which the
distance between these two points is nothing else than the Eu-
clidean distance, d(x,y). To obtain this geodesic distance, it
suffices to iterate the elementary operations of mathematical
morphology : dilation, union, intersection. This method has been
improved by using dodecagonal dilations instead of hexagonal di-
lations (Fig. 10b and c). Such simulation has been compared to
real crack propagations as that on figure 11. This confirms the

validity of the model proposed.

Fig. 11 : Comparison between true crack, from three point ben-
ding test, and simulated crack in polycrystalline graphite, from
oOsmont et al. (1987) : a) initial image ; b) true crack ; c) si-

mulated crack.
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CONCLUSION

These different methods, based on mathematical morphology, show
the possibilities that quantitative fractography can bring to
the mechanical investigations. With the technological progresses
and the enhanced capabilities of new automatic image analyzer
systems, quantitative fractography is promising. for the future.
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