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ABSTRACT

It has recently been shown that considerable information about the topology
of contacting asperities on the faces of fatigue cracks can be obtained from
ultrasonic measurements. The particular configuration of interest is that
of a fatigue crack in a compact tension specimen, illuminated at normal
incidence by a longitudinal elastic wave. Previous work has suggested that
the number density and dimensions of the contacts can be deduced from meas—
urements of the frequency and spatial variations of the scattered elastic
wave fields. This paper uses an analysis of the spatial Fourier transform
of the dynamic crack opening displacement to interpret those conclusions and
analyze several recent experimental results.
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INTRODUCTION

The growth of a fatigue crack is generally modeled in terms of empirical
rules such as the Paris Law (Paris and Erdogan, 1963), which states that
da/dn = A(AK)™ where a is the crack length, n is the number of fatigue
cycles at a stress intensity range AK, and A and m are material constants.
Over the last decade, a mounting body of evidence has established that the
full excursion of the applied load does not drive the crack tip forward due
to a variety of phenomena which are often referred to as crack tip shielding
(Ritchie, 1988). 1In one class of shielding, contact is assumed to develop
along the crack faces at plastically deformed asperities, dislodged oxide
particles or other geometrical features which prevent a perfect mating of
the fracture surfaces when the applied load is released. Since these con—
tacts bear load, they modify the stresses acting at the tip, thereby alter—
ing the crack growth rate. This influence of contacting asperities on crack
growth rate is discussed in a companion paper (Buck et al., 1989). The
present paper addresses the problem of experimentally characterizing the
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topology of contact. As discussed below, ultrasonic scattering measurements
have been found to be able to provide considerable information towards this
end.

EXPERIMENTAL CONFIGURATION

The experimental configuration for the ultrasonic measurements is shown in
Fig. 1. A fatigue crack, grown in a compact tension specimen, is illumi-
nated by a longitudinal wave incident perpendicular to the crack face and
focused in the plane of the crack. The longitudinal wave transmitted
directly past the crack can be picked up by a coaxial receiver placed on the
opposite side of the specimen. Alternatively, by changing the angular ori-
entation of the receiver and translating it so that it is still directed
towards the illuminated spot, longitudinal or transverse waves diffracted
from the crack tip or contacting asperities are detected. pifferentiation
of the diffracted L and T waves is aided by their different times of
arrival.

By comparing these signals to those observed in a reference experiment in
which the beam is directly transmitted through the uncracked ligament, most
of the influence of the measurement system, such as the efficiency of the
transducers, is eliminated from the data. This deconvolved information is
thus characteristic of the crack itself. By spectral analysis, translation
of the sample, or rotation of the receiver, one can respectively monitor the
frequency, spatial, and angular dependence of the crack transmissivity.

THEORY OF THE MEASUREMENT

General Considerations

In order to interpret this complex information, a unifying theory is
required. Based on the electromechanical reciprocity relation of Auld

(1979), it has recently been shown that the received electrical signal is
given by (Thompson et al., 1987)

. 1 _ T R _ +
r=4% £+ (2u; 8u;™) TN nyt dA (1)

where T is the electrical signal transmitted from the transmitting to the
receiving transducer, ® is the angular frequency, P is the electrical power
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incident on the transmitting probe, uiI is the dynamic displacement field
that would be produced_in the crack plame by the transmitting probe had the
crack been absent, Au.~ is the dynamic crack—ogening displacement (DCOD) of
the crack faces as driven by these fields, T;. is the dynamic field that
would be produced in an uncracked sample had Ehe receiver been excited by
the electrical power P, and nj+ is the normal to the crack face.

The predictions of Eq. (1) depend on_the characteristics of the transducer
radiation through the dependence of u and T on the incident electrical power
P. It is useful to assume that the illuminating longitudinal wave displace-
ment field only has a 3-component and to assume the existence of a normal-
ized DCOD defined by the relation

8g; = AuiT/ual. (2)

Equations (1) and (2) then combine to give
~ W 9 R
r=ip £+(263i- AE;) ugt T;3 dA (3)
where 631 is the Kronecker delta.

In the plane of the crack, one may also write
A
~ ~ . .
u3I = Al(w, R - R), TiaR = A?(m,e,ﬁ—R)e_Jk(x‘x)S‘“e (4)

where Al and A? are beam profiles, R is a coordinate vector in the crack
plane, and k is the wave vector of the polarization detected by the
receiver. The "»'" denotes the coorginates of the common intersection of the
beam axes. If one defines B(w,8,R-R) to be the product A AR, then Eqs. (3)
and (4) combine to yield *

r(w,8,R) = g% [ dx jm dy B(w,e,ﬁ-ﬁ)[zaai-Agi(ﬁ)]e—jk(x-§>sine (5)

Equation (5) is a summation over the three components of the DCOD. For
simplicity, only the contributions of the 3-component, which is expected to
be dominant, will be considered in the remainder of this paper.

There are three independent variables, 9, X and k = 27f/v which can be
varied in an experiment. The goal is to use this information to gain
information on (R), i.e. on the contact topology which shields applied
load excursions from the crack tip. In principle, one could devise calibra-
tion experiments to determine B. Then by measuring the received signal as a
function of k and/or ©, followed by similar exper iments in which the
receiver was tilted in the y-direction, ome could define the spatial Fourier
transform of and then reconstruct its detailed form by evaluation of the
inverse transform. In practice, however, this is not possible because a) it
is difficult to experimentally obtain the phase of the signal with suffi-
cient accuracy due to possible variations in metal path, and b) one cannot
readily make measurements at sufficiently high frequencies to resolve the
small contact spacings. Therefore, the less elegant procedure of picking
parameterized trial forms for Af; and varying the parameters to fit the
theory have been employed.

This general formalism will next be applied to some special cases to illus—

trate the type of information that onme can expect to obtain. As a starting
point, Fig. 2 sketches the expected spatial variation of several functions
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which play a key role in the theory. Part a) shows the DCOD for an ideal
crack with no contacting asperities as it rapidly rises from the value of
zero at the tip to a value of approximately two on the face. Oscillations
about that value, due to Rayleigh waves propagating on the crack face, will
be neglected for simplicity. In the Kirchhoff approximation, this DCOD is
approximated by a step function as indicated by the dashed line. As shown
in part b), the DCOD of a crack with contacting asperities rapidly oscil-
lates between the value of zero at the contacting asperities to a finite
value in the intervening regions. Part ¢) indicates the phase of the local
average of the DCOD, which was indicated by a dashed line in part b). The
m/2 shift is dictated by the fact that, within the Kirchhoff approximation,
the DCOD will be in phase with the displacement of the incident wave over
the contact-free faces of the crack. However, assuming that the contact
spacings are much less than a wavelength, the displacement in the cracked
portions will tend to follow the stress of the incident wave and thus be
shifted by m/2 from the incident displacement field. Part d) indicates a
diffraction limited beam size that is a few wavelength in dimensions. In
this paper, it will be assumed that L>>W>A>>C where L is the spatial extent
of the closure region, W is the spot size, A is the wavelength, and C is the

contact separation.

Through Transmission

Consider a through transmission measurement, for which 8 = 180° and thus
sin® = 0. From Eq. (5) and the slow variation of B over the dimensions of
the contact separations, it follows that

I(w,180°,8) = ﬁ% chx_im dy B(w,180° ,R-R) [2-BE5 () ] (6)

where E3(§) is the local average of the DCOD. The integral of the
first term in brackets is equal to the result of the reference experiment,
and hence contributes unity to the deconvolved result. The second term

1a¢! .
I _— Fig. 2.
(0) Schematic spatial variatioms of
X a. DCOD for "ideal" crack.
1agl b. DCOD for crack with contacting
Wz asperities.
W\H (b) c. Phase of local average DCOD
”Mﬁﬁﬁﬁﬁﬁﬂﬂm[ 1 e for crack with contacting
L R o asperities.

d. Beam overlap function.
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thus describes the crack induced decrease in transmission. The contribution

of the second term to the integrand is sketched for several values of X in

Fig. 3. The solid line indicates the results for the ideal crack, as

modeled by the Kirchhoff approximated. The dashed line indicates’that of a
A

%rack with asperities. The gradual decrease in transmission as x increases
is also shown.

To allow this.behavior to be quantified, a model for AE. has been developed
based on'qua.:SL—static arguments. When there are many cgntacts per wave-
llength, it is assumed that Buz~ = 0/x where O is the stress existing at the
interface during the wave interaction. Furthermore, it is assumed that X
can be. related to the topology of the interface using standard elasticity
solutions for static crack deformation (Baik and Thompson 1984) One then
concludes ’ '

r(w,180°,8) = 45 [dx [dy [1+5a(R)]-1B(w,180° ,K-R) T3

where a(R) = ﬂpvf/K(ﬁ). By postulating various functional forms for x, one
can attempt to fit T(w,180°,R) to experimental data. 1If a successful Eit
can be obtained, one has experimentally determined the "spring constant' or
crack stiffness which results from the contacting asperities.

This prOC(-Bdur"e provides important information on the topology of contact.
However, it is not complete, as can be seen from explicit expression for X.
For exam?les for non-interacting contacts, K determines the product dN
where d is the contact diameter and N is their number density. Since :]N is
not the parameter controlling crack tip shielding, additional information is
neede?d to fully define the crack contact topology to the extent needed to
predict modifications in crack growth rates.

Tip Diffraction

When 8 is changed from 180°, one is describing the signal diffracted from
t‘r'\e crac.k tip. In general, experiments are set up in such a way that the
51gn§1 in the uncracked ligament is of negligible amplitude. The formula
predicting the behavior for this scattered field may be obtained by dropping
the term 283; in Eq. (5). As noted before, this is a Fourier transform of
the DCOD, modulated by the beam profile.
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Schematic spatial variations of

a. B|BE,| for x < O.

b. B|BE3)| for X = O.

c. BIBE,| for % > O.

a. |T8w,180°,R)].

N

e. |T (0,8,0)].
Solid lines: ideal crack.
pashed lines: closure described
by locally averaged DCOD.
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Consider first the ideal crack. In the Kirchhoff approximation, the
integrand has the same general form as in Fig. 3b, although it may differ
slightly due to the variation of beam width with angle of incidence. Fig.
je illustrates the Fourier transform of that function, plotted as a function
of p = ksin®. The slow decrease in diffracted signal with angle is a comse-
quence of the high spatial frequencies present in the Fourier transform of a
step function. When partial closure is present and the quasi-static spring
model is used to model the DCOD, as indicated by the dashed line, the sharp
singularity, and high spatial frequencies, of the ideal DCOD vanish.
Consequently, the predicted scattering at higher angles is greatly reduced.
Moreover, the Fourier transform is somewhat asymmetric due to the phase
variation of Ea i

However, comparison of this model to experiment has revealed that the
predictions are much lower than the measurements. It has been proposed

that the problem is associated with the absence of discrete contacts in the
model (Rebhein et al., 1985). To interpret this in terms of the theory of
Fourier transforms, suppose that one can write 8E3(x) = BE;(x) M(x) where
M(x) is a rapidly varying nodulation, with zero mean. Using the symbol F to
denote the Fourier transfom operation

F[AE3(x)] = F[AE3()]*F(M(x)] (8)

where * denotes convolution. Rapid oscillations in M lead to much greater
energy in the high spatial frequencies of the Fourier transform of Af3 than
in that of A—€3. It is these components that the theory predicts are
detected in a diffraction experiment. When M is replaced by a periodic
series of delta functions, specific calculations have been carried out.
These show that the magnitude of the tip diffracted signal is very sensitive
to the number density of contacts and this sensitivity has been used as a
basis of the estimate of that density.7 In this delta function approxima-
tion, F(AE3(X)) becomes a series of replicas of F(AE3), centered at p =
2mn/C, where C is the contact separation. Note that the asymmetry of F(AEg)
can lead to a greater contribution to the diffracted signal from the spec-—
trum centered at p = 27/C than from that centered at p = 0. However, as

C » 0, these discrete contributions ultimately become spread out and the
response is dominated by the central replica of F(AE3z). In this limit, the
predictions of the delta function model approach those of the quasi-static
spring model.

EXPERIMENTAL RESULTS

Ideal Crack

Figure 4 compares theory and experiment for an '"ideal crack," simulated by a
saw slot. Transmitted signals have been previously reported by Thompson et
al. (1984). Here, the diffracted shear waves are shown. Part a) shows the
angular dependence of the diffracted shear wave at discrete frequencies.

The corresponding theoretical results are shown in part b). There is good
qualitative agreement between the two results, although the theory tends to
decrease in magnitude somewhat more rapidly with frequency. The observed
responses are a product of two factors. The wave-crack interaction produces
a response which gradually rolls off with angle, as shown in Fig. 3e.
However, the liquid-solid interface transmission coefficient has consider-
able structure which strongly influences the diffracted magnitude.
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Simulated Fatigue Crack

In order to simulate a partially contacting crack with known contact topol-
ogy, a screen-like mesh of disbonds was induced in an iron sample by powder
metallurgical techniques (Hsu and Thompson, 1988). The resulting dependence
of the transmitted signal on position is shown in Fig. 5a. Theoretical
predictions for the response of this '"crack'" are shown in Fig. 5b, using the
spring model, Eq. (7). Here the spring constant was chosen to ha\’re a value
of x = 1.17 x 1012 dynes/cm3 over the face of the crack, and k = « (perfect
contact)'in the uncracked ligament. Theory and experiment agree well for
frequenc?es up to 6 MHz. At higher frequencies the signal tends to drop
more rapidly in experiment than in theory. Other measurements have shown
this to be a consequence of significant energy being scattered in other than
the forward and backward directions, thus violating an assumption used in
deriving the quasi-static spring model.

Scattering from Fatigue Cracks

A number of experiments have been performed on fatigue cracks, leading
to several new observations regarding the crack closure phenomenon. Here
three recent conclusions are summarized. ’
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Extent of Closure Zomne. Measurements of the through transmission data, for
a fatigue crack grown in Al 7075-T651 showed a large spatial extent of the
closure (Buck et al., 1988), comparable to that implied by x-ray stress mea-
surements (Welsch et al., (1987), but much greater than would have been
expected based on some previous models of crack closure phenomena.

Effect of Overloads. It is well known that a single cycle or block of over—
Toad pulses during the growth of a fatigue crack will retard its growth.
Previous ultrasonic measurements have shown that the overload produces a
region of enhanced asperity contact which persists even after subsequent
cycling of sufficient extent to cause the crack to reinitiate (Rehbein et
al., 1988). More recent measurements have been made directly after the
application of the overload. The effects of discrete contacts are mnot seen
in this data, which is consistent with the concept of massive closure which
holds the crack faces in virtually complete contact.

Effects of Growth under Decreasing AK. Load shedding crack growth studies
are made for a variety of reasons, Tncluding the study of initiation
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cffects. 1In that case, it is argued that crack growth rate will decrease as
lhelload is decreased until the threshold for initiation is reached. Ultra-
sonic measurements made on such specimens have shown an extensive region of
¢losure along the crack wake (Rehbein et al., 1988). At any frequency, the
Agta look quite similar to those obtained on the constant grid mesh shown in
an: 5i gowever, in contrast to those results, the signals do not fall off
rapidly with frequency, implying that the spring model is not applicable.
Qne possible explanation suggested by the analysis presented in this paper
s that the contact dimensions and separations are considerably greater.
These samples have a very large component of diffracted shear waves in the

near forward direction (Rehbein et al., 1988) which is also consistent with
this interpretation.

CONCLUSTIONS

[l has been shown that ultrasonic measurements provide important information
on the degree of contact across the faces of a fatigue crack and hence on
the Qegree of shielding of the tip from excursion in the applied load.
Fourier transform analysis is used to illustrate the theory and clarify the
dependence of through transmitted and tip diffracted signals on the contact
topology. The theory is used to interpret a series of experiments on
samples ranging from saw slots, grids with controlled constant dimensions,
and fatigue cracks grown under a variety of conditions. The implication of

this data)on crack growth rate is discussed in a companion paper (Buck et
al., 1989). -

A V§riety of crack-tip shielding mechanisms are being utilized in attempts
zollncrease the toughness of ceramics. For example, ligament bridging can
shield the tip of the crack from the full excursions of the applied load

(Cook et al., 1987). It is suggested that the above ultrasonic techniques

could be adapted to provide important new ijnformation in the study of those
phenomena.
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