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ABSTRACT

This analysis for ductile fracture by microvoid coalescence is based upon
the three-dimensional model of Widgery and Knott in which microvoids link
with a propagating crack if they 1ie within some interaction distance of
its plane. An expression for dimple density is developed from this model
using projected image relationships for a thin slab. Void nucleation and
growth are incorporated by numerical integration of the Rice-Tracey growth
equation for a constant mucleation rate. The stereological approach is
evaluated using tensile data for spheroidized 1045 steel to predict the
effect of hydrostatic pressure upon damage evolution and dimple density.
The analysis provides estimates of dimple size and shape that fit the
experimental data, and thus define the parameters that control microvoid
coalescence and the micro-roughness of dimpled fracture surfaces.
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INTRODUCTION

The ductility and fracture toughness of most engineering alloys that fail
by microvoid coalescence (MVC) are controlled by the dispersion of
second-phase particles. This is a consequence of the nucleation and growth
of microvoids at particles during plastic deformation. These local damage
processes, which are statistical in nature, continue until an instability
or flow localization process intervenes to produce a macroscopic crack or
fracture. The most common instability involves linking of nearest neighbor
microvoids by internal necking of the intervening matrix (Thomason, 1968),
which localizes plastic deformation to a thin layer that forms the final
dimpled fracture surface. Experimental observations clearly show that such
MVC is produced by sudden, intense localized necking of the intervoid
matrix across a sheet of microvoids, which limits it almost exclusively to
a thin layer adjacent to the final fracture surface (LeRoy et al., 1981).
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This paper descrides a stereological approach based on the geqmetrlc‘model
of Widgery and Knott (1978), wherein void coalescence occurs 1n a thin
volume whose thickness represents an interaction distance ?equlred for
MVC. Internal necking is thus confined to the three-dimens:.gnal, _
continuous, intervoid matrix separating nearest neighbor voids within the
volume element defined by the interaction distance. The model defines a
unique microstructural size scale for MvC, and thus it may provide the
characteristic length needed to relate microstructure and fl;acture
parameters as discussed by Rice (1976). The advantage of this approach
lies in the ability to measure the interaction distance and thereby
provide a rational basis for evaluating and understandlnglthe ch..tlcal
conditions that control the onset of MVC by internal necking. 'Il‘hls paper
describes how the geometric model is used to evaluate the physical and
microstructural parameters that are involved in the MVC process and in
controlling dimple size and shape for uniaxial tensile testing.

STEREOILOGICAL ANALYSIS FOR MICROVOID COALESCENCE

The geometric model of Widgery and Knott, where MVC occurs witl}in in a
thin volume of thickness t, furnishes the following projected image
relationship (Cahn and Nutting, 1959) between void density, Ny, and
expected dimple density, <Np> on the fracture surface:

<, (dimples)> = Ny(voids) (<Dp(voids)> + t} . (1)

This equation is based upon a thin section through a dispersion of convex
microvoids with average caliper diameter <Dg>, normal to the segt}on,

as illustrated in Fig. 1. The model confines the necking instability to
the intervoid matrix between nearest neighbors within a planar interaction
volume, and thus limits the fracture surface to a statistical shegt of
microvoids (Thomason, 1985) as observed (ILeRoy et al., 1981). Projected
void density at the onset of instability is thus equal t':o the expected
dimple density on the fracture surface, and the interv01d.mat1.‘1x that
undergoes necking is defined by Dirichlet cells as shown in Fig. 1b.
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Fig. 1 Diagram of thin section through a dispersion of
microvoids showing D¢ and t and a projected
view with nearest neighbors defined by Dirichlet
cells and the stereological relationships indicated.
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Equation (1) can be expressed in terms of particle density by defining the
fraction of particles nucleating voids, £, = Ng(v) /Ny(p), and a
dimensionless thickness, k = t/<Dp(V)>. Hence imple density is given

as a simple product of physical and microstructural parameters:

<N, (dimples)> = £, Ny (p) *<De(v)>*(k + 1) . (2)

The stereological assumptions involved in this relationship are a thin
volume sampling of the void dispersion and convex void shapes. The
physical conditions implicit in (2) are that necking is confined within
the planar volume element; that t is controlled by the critical

conditions for instability; and that f, does not change during MVC.
Application of (2) to predict dimple size requires stereological estimates
for f,, Ny(p), <Dp(v)>, and K, which involve three—dimensional

sampling methods (Rhines, 1977). As values for these parameters are not
available in studies of ductile fracture, a nucleation and growth model
must be used for application of eq. (2).

The most important and most difficult parameter to measure in eq. (2) is
the average microvoid size, <Dp(v)>. This parameter has been employed

to describe the critical damage condition for void coalescence (Brown and
Embury, 1973). It is also the principal microstructural parameter in local
strain models of ductile fracture (Thompson and Ashby, 1984). Evaluation
of <D~(V)> requires that void nucleation and growth be either measured

or mogeled over the strain path for a tensile test. The stereological view
is equivalent to the growth path analysis of DeHoff (1971), which requires
that void size distributions be measured over the strain path. As void
size distributions have not been measured, eqg. (2) will be applied using
the Rice and Tracey (1969) growth model, and a constant nucleation rate
(IeRoy et al. 1981) to describe the void growth paths.

The Rice-Tracey growth model for evolution of noninteracting spherical
voids in a remote triaxial stress field has been applied in several
studies (Tvergaard and Needleman, 1984, BrownRigg et al., 1983). Principal
radii for the axially symmetric ellipsoidal voids that grow under remote
tensile stress conditions are given by

&F
R3(Ef,€n,0m/6e) = Roexp( [(f(0m/de) + D@m/ce)) dE ) , (3)
and G
£f
R1(E£, én,61/0e) = Roexp{ [(-f(6m/Ge)/2 + D(6myce)) dE ) , (4)
€én

where RO = initial void size, €f = fracture strain, én = nucleation

strain, ¥ = shape change function, D = dilatational function, and

6m/0e = mean stress/effective stress. R3 is the void size in the
direction of principal stress and thus, 2R3 = Dp(v). Rl is the void

size normal to the principal tensile stress. RO is taken as the size of
the nucleating particle, which implies that the physical mechanism for
void nucleation is interface decohesion. Also RO may depend on strain if
particle size affects void nucleation. These equations can be used to
calculate growth paths for individual voids when the stress state is known
as a function of effective plastic strain such as given for tensile tests
by BrownRigg et al. Figure 2a shows their eguations and a plot of the
stress data, which will be used for application. The dilatational
function, D(€), is given in Fig. 2b along with a plot of its value for
the tensile strain path. 2'is taken as approximately 1.67 as indicated by
Rice and Tracey (1969) for tensile tests with this range of D.
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Fig. 2 Stress functions 6m and e versus plastic strain
and D(€) for the tensile conditions and pressures
P; from BrownRigg et al. (1983).

Growth paths for voids that nucleate at different plastic strains are
readily calculated by numerical integration of (3) and (4) over the strain
interval between nucleation and fracture. These results, which are shown
in Fig. 3, illustrate the effect of triaxial stress state in increasing
void growth rate in the direction of principal stress. They also show that
voids tend to contract in the Rl direction rather than grow as suggested
by BrownRigg et al. The dependence of R3 on nucleation strain indicates

the necessity for establishing an appropriate stereological average of
Dg. This is also shown by the data of Argon and Im (1975) 'where )
micleation is dispersed over a significant range of plastic strain.
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Fig. 3 Growth paths for spherical voids calculated from the
Rice-Tracey growth model for varying nucleation strains.
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Void nucleation frequency can be expressed as a distribution function
normalized over the strain interval for the test

F(x) = f;(E)dE = fraction nucleated for &< x ,
]

where f(£)de is the fraction of voids nucleated in the strain interval
to €+ df. The average for Dp is thus given by

>
<D (voids)> = 2<R3> = 2 JE(€)*R3 (€, €,0m/Ce) de . (5)
o

The simplest model for f(€) is a constant nucleation rate with a
starting strain €s and ending strain &f, as employed by IeRoy et al.
(1981) for similar tensile tests. Hence, <R3> is given by

&f
w3> ={1/(Et-€s)} [R3(EE,E,61/Ce) At . (6)
&

This equation allows <R3> to be calculated by numerical integration

using eq. (3). Although other distribution functions could be used for
nucleation rate, such as the Gaussian applied by Tvergaard and Needleman
(1984), available data are not sufficient to identify the functional form
for nucleation frequency.

APPLICATION OF THE MODEL

This section describes the application of the model to experimental data
from tensile tests of spheroidized 1045 steel with varying hydrostatic
pressure (BrownRigg et al., 1983). Microstructural and test parameters
reported for a coarse carbide dispersion are given in Table I.

Table 1. Microstructural and Test Parameters for Spheroidized
1045 Steel tensile tests (BrownRigg et al., 1983).

Vy = 0.066 = Volume fraction of carbides.
<R> = 0.26 um = Average carbide radius.
<Vol> = 1.1 ,um_3 = Average volume selected for nucleation.
Ny = 0.06 ,um_2 = Vy/<Vol> = Carbides per unit volume.
Np = 0.03 Mm = Ny*<De> = Carbides per unit area.
Pressure (MPa) £s Ef RO (um) fn k
0.1 1 0.30 1.36 0.52 0.50 1.0
345 0.70 1.98 0.55 C.52 1.0
690 1.10 2.60 0.60 0.58 1.0
1100 1.60 3.34 0.63 0.62 1.0

The value for carbide density was selected to be consistent with the
largest experimental planar void densities measured. The strain
corresponding to the start of nucleation was selected to indicate the
beginning of the more profuse nucleation of voids at carbides. Hence, void
volume fraction can be calculated using the Rice-Tracey growth model and a
constant nucleation rate from

Vy(voids) = Ny (voids) *<Volume> (7)

where <Volume> = (411'/3)*<R3>*<R1>2, since Rl is approximately constant
as shown by the growth data in Fig. 3. Calculated void volume fractions
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Fig. 4 Plot of calculated void volume fractions and
experimental neasurements for each test pressure.

are plotted in Fig. 4, along with the experimental volume fraction data.
Void volume fractions calculated by subtracting the volume fraction of
nucleating carbides show an excellent fit to the experimental data for
each hydrostatic pressure. Vy for comparison should not include the
nucleating carbides since these were clearly not included in the
experimental measurenents.

The average value, <Dc(voids) >, was obtained by numerical integration
of eq. (6) for the strain ranges listed in Table I. This allowed the
expected dimple density to be estimated for the selected values of f
which was not measured by BrownRigg et al., was based
upon the experimental data reported by Argon and Im (1975) for 1045 steel
with an adjustment to fit the largest experimental Vy levels. The
value, k = 1, was selected as a first approximation pbased upon the model
of Brown and Embury (1973) for MVC. The expected dimple density calculated
from eq. (2) thus provides an estimate of the average dimple size from

D, = 1.13*(<NA(dianes)>‘°-5) , (8)
which gives the equivalent circle size for the average projected dimple
area. Calculated dimple sizes are plotted in Fig. 5 versus hydrostatic
pressure for comparison with fractographic measurements. The comparison is
excellent even though the measured data were not corrected for a nonplanar
fracture surface topography, which may increase their values by 50% (El

Soudani, 1974). <R3> and > give an estimate of "micro-roughness"
(Thompson and Ashby, 1984), M= <R3>/<D>. Although experimental
measurements are not available for coi ison the trend follows that

suggested by the highly elongated voids ocbserved with increasing pressure.
Calculated values for <R3> ard M are also shown in Fig. 5 for

comparison with the dimple size data. Figure 5 also includes a plot of
nearest neighbor spacing within the "interaction volume" calculated from
the following equation for a random planar dispersion as in Fig. 1b:

Ay = (N (voids) %) - 2RO . ©)

RO is used in this equation as an estimate for the projected radius of
the voids within the interaction volume.
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Fig. 5 Plot of calculated dimple size, <R3>, M, and

compared to experimental dimple size data (solid).

DISCUSSION

The results for volume fraction evolution and dimple size variation with
pressure indicate that the stereological analysis applied for constant
nucleation rate with the Rice-Tracey growth eguations provides an
excellent description of the MVC process for tensile conditions. The
classic overestimate of fracture strain by the Rice-Tracey growth model
thus appears to result from the requirement that coalescence occur by
lateral void growth rather than the need to incorporate dilatant matrix
plasticity. This model is therefore consistent with Thomason's (1985)
model that necking instability intervenes to cause MVC before dilatant
plasticity of the porous matrix plays any role in the process.

The coalescence model does not specify critical conditions for the necking
instability, but rather it indicates how one can evaluate these conditions
by applying appropriate stereological section and fractographic
measurements. As an example eq. (1) shows that k can be estimated from

the dimple density and <Np (voids)> normal to the tensile axis since it

can be written as

<Np (dimples)> = <Np (voids)>*(k + 1) = (10)

The value of t can thus be estimated if <DC(vo'1ds)> normal to the

tensile axis is measured stereologically. This again illustrates the
importance of estimating average void size normal to the tensile axis. One
method for estimating <Dc(voids)> is to assume that the voids are
ellipsoids of revolution as in the Rice-Tracey growth model and apply the
technique described by DeHoff (1968), which is illustrated in Fig. 6- This
method gives Nv(voids), as well as <R1> and <R3> and thus provides
estimates of both nucleation rate and growth paths if applied over the
strain path. This result again emphasizes the need to apply appropriate
stereological methods for characterizing void nucleation and growth in
order to understand ductile fracture and the critical conditions for MVC.
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Fig. 6 Stereological analysis for ellipsoidal voids.
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