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ABSTRACT

The yielding of ceramic matrix composites is accompanied by the formation of many small
matrix cracks. In this paper the growth of one such crack is analyzed, and the yield
strength is defined as the stress level at which he stress needed for further propagation
of the crack becomes constant. Under certain drcumstances, particularly if the crack
spacings are insufficient for ideal load transfer from matrix to fibers, the transition to

a constant stress can occur discontinuously; and, this is associated with a flattened crack
profile. The prediction of a discontinuity seems (0 be in agreement with the discontinuous
nature of yielding that is observed experimentally. The paper also addresses some of the
deficiencies in the mechanics and shear-lag analysis of earlier studies on ceramic
composites.
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INTRODUCTION

The load-elongation curve for a fiber-reinforced ceramic matrix composite is similar to

that for a steel. There is an initial linear elastic response, followed by an apparent
yield point, where the load is nearly independent of displacement. Beyond this stage the
deformation is non-linear and inelastic, until complete failure of the composite. This

type of behavior contrasts with the deformation characteristic of a monolithic ceramic, for
which there is a linear elastic response followed by catastrophic failure.

The yielding behavior that is observed on a macroscopic scale from the load-elongation
curve, is microscopically associated with the material being traversed by a number of small
cracks, similar to the twinning of metals. The cracks are restricted to the matrix

material, and appear only at yielding. The fibers remain intact and bridge the crack
surfaces. Unloading of the specimen beyond the yield point shows that the composite
modulus has decreased, as further confirmation of cracking of the material at yielding.
Consequently, from a micromechanical perspective, the factors which control the formation
of multiple matrix cracks are exactly those that control yielding.
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evidence (7] indicate that in a nicalon (SiC fiber)-glass ceramic composite, the fiber-

The phenomenon of multiple matrix cracking has been addressed from a global ener N
P P 9 g gy matrix interface has a thin carbon layer, which allows easy relative movement between

viewpoint by Aveston, Kelly, and others [1,2]. The drawback of such an analyses is that
the formulation depends on an inherent matrix strength (or strain), which is unclear for matrix and fibers.
the composite. Marshall et al. [3,4] have modeled yielding of unidirectional ceramic-
matrix composites by analyzing the growth of a single microcrack among the multitude of
matrix cracks. It was hypothesized in the model that yielding occurred when the stress
needed for further growth of the crack assymptotically approached a steady state value,
independent of any further growth of the crack.

ANALYSIS

Figure 2 shows a single matrix microcrack being loaded by the far-field applied stress
(capp). Let ¢f° and om© correspond to the stress in the fibers and matrix respectively,

In this description [3,4], yielding is a rather continuous event, and should occur over a far from the crack surfaces. Then, from the equilibrium of forces,

range of stress values. In contrast, most experiments on ceramic-matrix composites

indicate that yielding is a discontinuous phenomenon, and occurs at a fixed level of stress cing = o0 Vi % om9. Vi (1)
for a particular system. Additionally, the model in [3,4] appears to have a number of PP
other deficiencies, both in the mechanics of the individual crack, as well as in the shear where V¢ and Vm are the volume fractions of fibers and matrix, respectively.
lag analysis.
Because there is no relative sliding between fiber and matrix, ¢f© and o¢m© are related
The model of yielding of an unidirectional ceramic-matrix composite, that is described in through the iso-strain relation
this paper, is similar to the approach of Marshall et al [3,4], in that it also focusses 2
attention on the growth of an individual microcrack. The rationale is that what happens to of0 /Ef = om© /Em = capp /Ec @
a single crack is also what happens to any of the other matrix cracks, and consequently the
growth behavior of the individual crack should be related to the macroscopically observed where Em, Ef, and Ec, are the elastic moduli of matrix, fiber, and composite, respectively.
yielding phenomenon. The significant deviations from [3,4] are in the way the far-field It is important to point out that equations 1 and 2 are only valid far from the crack
applied stresses are related to the crack bridging stresses and displacements; also, the surfaces.
paper attempts to address some apparent discrepancies in the earlier shear lag analysis
(see Appendix). It is shown that under particular circumstances yielding can occur gapp = 0OfVf + aOnpVp
discontinuously, when the crack shape changes from a parabolic type of profile to a
flattened shape, as illustrated in Figure 1. T t T r r ' T
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Fig. 1. Matrix cracking in ceramic composites. (a) Schematic of crack profile % % 6 '4 % % % ’ %
at low loads. (b) Flattened crack profile, when all the far field matrix f /] % % % 4 % ’ 7‘
stress, AdOm, is transferred to the fibers; the crack opening displacement 2 % ﬁ % % % ’ %
displacement assumes a constant value, écr. / g é / % % 2 % ? %
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Since the cracks are quite small, the analyses involves a blend of fracture mechanics and L 1F1bert lMatrlx+ l i l L
composite mechanics, similar to the blend [5,6] of fracture mechanics and dislocation
theory in the case of plastically deformable solids. Far from the crack plane the fibers Fig. 2. Schematic, showing the details of matrix cracking and load transfer in

and matrix satisfy isostrain conditions, whereas near the crack surfaces the relative
sliding of matrix and fibers occur at a constant value of friction stress. The assumption
of constant friction stress is actually quite good, since recent electron microscopic

ceramic matrix composites. For a specific value of opening, u, there is a
corresponding increase, Agf, in the fiber stress.
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At the crack surface the matrix does not carry any load. Imagine that the crack is
introduced in the following manner. Initially a cut is made in the matrix material (with

the fibers remaining intact), but tractions are applied on the cut-surfaces to balance the
applied load. As far as the deformation of the composite is concerned, nothing happens at
this stage. Next, those tractions are gradually reduced to zero. During this process the
matrix relaxes, and its elastic strains gradually reduce by amounts corresponding to the
reduction in the tractions divided by Em.

The reduction in strain in the matrix produces relative displacement of the adjacent cut
surfaces. However, since the fibers remain intact, they cannot displace by the same
extent. Consequently, there is relative sliding between fibers and matrix, with the matrix
trying to pull away from the fibers. For an individual fiber the situation is as if the
fiber was held in a grip, and the matrix was being stripped from the fiber, in a manner
which is essentially the reverse of the familiar fiber pull-out experiment.

Because of the existence of a constant friction stress at the fiber-matrix interface, the
relative sliding is limited; for a given amount of relative displacement, a part of the
matrix stress, which originally existed near the cut surfaces, is transferred to the intact
fibers. It is this load-transfer ability, through. the friction stress, that makes the
composites so_forgiving. The shear lag analysis is described in Appendix A, and it
provides a relation between the extent of relative sliding, u, and the corresponding amount
of matrix load that is transferred to the fibers, or alternately, the additional stress in

the fibers (Aof) due to the load transfer. Because of symmetry at the crack surface, the
displacement u is exactly half the crack opening displacement, §.

It is assumed that the crack in the matrix propagates at a constant value of stress
intensity factor, Ktip, which exists at the tips A or A' in Figure 2. The existence of a

Ktip requires a parabolic type of elastic displacement (éel) profile for the crack

surfaces. Additionally [8,9], there is a logarithmic type of inelastic displacement

profile [10] which occurs due to the stretching of the individual ligaments (fibers), and

these displacements exist even when Kiip is zero, as shown by Bilby, Cottrell, and Swinden
[10]. However, since the entire matrix crack is bridged, these BCS type of displacements
are small compared to the elastic displacements. Hence, the total crack opening
displacement (COD), 4, is approximately equal to del.

Displacements must be calculated because the stresses in the fibers, which bridge the crack
surfaces, depend on the amount of transferred matrix loads; the latter, in turn, are
controlled by the extent of relative sliding, u (= é/2). However, the matrix cannot

transfer a stress greater than omO, which is the stress in the matrix far from the crack
surfaces. Consequently, it follows from the shear lag analysis, that there must exist a

maximum amount of relative displacement, ucr, which depends critically on the value of omO.
In other words, for a given applied stress, ¢app. the COD of the crack cannot increase
without bound as the crack extends, but is cut-off at a maximum value, écr (=2ucr). It is
this restriction that provides the flattened shape shown in Figure 1b.

The rest of the analyses is essentially a mathematical description of the above physical
picture. The stress in the fibers at the crack surfaces is given by

of = of0 + Aof (3)
where, from the shear lag analysis of Appendix A, it follows that
Aot = (2T/r) { ulxrTg }1/12 . (4)
Here, T is the friction stress between matrix and fibers, r is the radius of fibers, u is a

function of x and is the relative total displacement (equal to half the crack opening
displacement, § ) between the matrix and fibers , and

B = (V/EmAm) + (1/EfAf) (5)

In the above equation, Am and Af (=#r2) are the cross sectional areas of matrix and fibers,

respectively, so that
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Vi = Afl(At + Am) 6)

The relative fiber-matrix displacement is half the COD for an elastic crack loaded to a
stress intensity - level Kitip, and, from reference [11] it follows that

u = 2 Kip Ja2 x2 | E¢ Jra 7

where E¢'=E¢/(1-42), and p is the Poisson's ratio.
Figure 2 shows that the applied load ( = omCAm + ofOAf) is balanced by the load in the
fibers (=ofAf= [of0 + Adf] Af ), and the local Kip, i.e.

Kapplied = KL + Ktip (8)

where Kapplied is due to a constant far-field applied stress, oapp. and KL is the ligament
contribution due to a stress, ocs, distributed on the crack surface. The stress, ocs, iS
related to the fiber stress (ofO+ Acf) through the relation

ocs = (¢f® + hAoef) Vi (9)

since only an area-fraction Vi is occupied by the fbers. Implicitly it is assumed in
equation 9 that the fiber stress is averaged out ower the matrix-plus-fiber area on the
crack surfaces. The constant h ({1) has been intoduced into equation 9 to account for
partial load transfer, which can occur if half the crack spacing (lp) is less than the
critial length (lor={u/xrT8}1/2) needed for ideal load transfer (Acf), corresponding to

relative displacement, u; thus, h=lo/lcr.

From fracture mechanics principles [11],
a

K = z/a,—f vos Ox | TR (10)
0

or, using equations 4,7, and 9

KL = 1198 0 a 3/4 + sfoVy/ra (1)
where 1 = 2397 h {EfKan‘/U +<I>)rEc'}1/2 Vi , and &= EV{EmVm
Now,

Kapplied = ocapp V@@ = emOVmyra + ofoVi/ra (12)
Substituting equations 11 and 12 into equation. 8, and substituting for em© from equation 2,
we have ‘

sapp = c1 alA + c2/\/a (13)
where ¢c1 = 1620 h {EfKﬁpr/(H@)rEc'}wz (Ec'/Em) (V#/Vm), and

c2 = Ktip (Ec/Em)Nmyr.

The behavior of equation 13 is shown by the upper curves in Figure 3, with the following
set of material properties for a SiC reinforced glass-ceramic composite [3]: Ef=200 GPa,
Em=85 GPa, Ec=143 GPa, Vf{=Vm=05, r = 8um, I'=2 MPa, and Ktip=2 MPaym. Three
values of h (namely, 1.0, 0.75, 0.5) have been used for the parametric curves. Here Ktip
is taken to correspond to the fracture toughness, Km (=2 MPaym), of the unreinforced
matrix. In view of the presence of other fibers and residual stresses, Ktp would probably
be less than Km.
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Fig. 3. Applied stress plotted versus half crack length, a. The equilibrium
conditions for crack growith are represented either by the falling curves,
or by the dashed lines, depending upon the value of a. The rising curve,
agat, provides the critical crack lengths needed to obtain a flattened
crack profile for particular values of applied stress. As an example, for
h=0.5, the equilibrium condition is represented by the curve NP for

a < agat (ie. to the left of P), and by the dashed line PR for a > agat.

Figure 3 shows that the stress needed to propagate the crack decreases rapidly at short
crack lengths. If the load transfer is ideal (h=1), then the stress needed for crack
growth assymptotically reaches a plateau level (actually a shallow minimum), and, similar
to references (3,4], this would correspond to the yield stress.

For non-ideal load transfer, equation 13 can become invalid at long crack lengths, since,

as already mentioned, the crack opening displacement cannot be larger than a value, écr,
which depends on the current value of om0, and hence on e¢gpp through equation 2. The
maximum value of relative displacement between fibers and matrix (ucr) is obtained by
equating the matrix load far from the crack to the additional load in the fibers, since

this corresponds to the maximum load that can be transferred. Thus,

om@® Am = Adf Af (14)
For crack spacings less than 2icr, the constant h would be multiplied on both sides of
equation 14, and would cancel out. Using the shear lag analysis, equation 4, and

substituting em®=(Em/Ec’)eapp from equation 2, we have

ucr = {(1+®)@2} {s2app /4TEf} {E{/Ec'}2 r (15)
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For a given applied load, the crack length (asat) at which ucr is just reached is obtained
by equating equations 7 and 15, with x=0. Hence,

asat = (x/64) [{(1+8)@2} {EYEC'} {oZapp r /K2tip} {Ktip/TH 2 (16)

The lower solid curve in Figure 3 corresponds to equation 16, and provides critical values
of crack lengths (asat) for various applied stresses. At a given applied stress, if the
crack length is greater than the that specified by the curve, the crack will have a profile
as shown in Figure 1b.

Figure 3 shows that the force-equilibrium curve can intersect the asat curve at a point
such as P, and beyond this crack length equation 14 is no longer valid. After the
intersection point, the appropriate crack surface stresses, using the notation of Figure
1b, are

(0f0 + hAof) V§ = ofoVf + homOVm for x < ae (17a)

= (ef0 + hAcf) Vf for ae { x £ a (17b)

ocs

In deriving equation 17a we have used equation 14, since over this range of x values, all
the load is transferred from the matrix to the fibers. On the other hand equation 17b is
identical to that used for deriving equation 11.  Substituting equations 17a and 17b into
equation 10, we have

aeg
KL = 2/a/x y' (ofOVF + hﬂm"~')Vr|'1)dx/\/€2-)(2 +ja ocs dx /\/;2«2 } (18)
0 ae

Here, ae = a - asat, where asat is obtained from equation 16.
Substituting into the main equilibrium equation 8, it can be shown that
sapp = 1.311hcqall4fy/cos-1(ag/a) + 1.57c2 /(ya cos-1(ag/a) (19a)
where,
f1 = 2 FO,12) - 2y2 E(6.1/2) + 1.198 (19b)

F and E are incomplete elliptic integrals of the first and second kind respectively with
modulus  1/y/2,
sing = 2 sin (x/4 - af2) (19¢c)
a = cos! (ag/a) (19d)

It can then be shown that 'a’ satisfies the following equation

a = (g1/g2)4R3 (20)
where
gy = 1.198 c2/c1, and, g2 = (asaya)!/4 cos1(1 - asat/a) - hf1

From equation 20 the values of a can be obtained for various values of asat/a. The value
of a at asat/a = 1 determines the intersection of the two curves shown in Figure 3.
Substituting into equation 19a, the corresponding values of applied stresses can be

obtained.

The dashed curves in Figure 3 show the variation of the applied stresses with crack length,
beyond the point of intersection. The stress stabilizes to a constant value, and all that
occurs during this period is a stretching of the zone of constant displacement. Most
importantly, the transition to a constant stress occurs discontinuously, which agrees with

the discontinuous nature of yielding.

The yield point of the material has been measured, and it is approximately 290 MPa, whereas
the present calculations (Figure 3) indicate that it can vary between 250 MPa and 340 MPa,
depending on the value of h. Observed [4] crack spacings (2lg) for this material is
approximately 400 pm. On the other hand, using equations 14, 4, and the second half of
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equation 2, and replacing the bracketed term in equation 4 by lcr, and assuming the applied
stress is 300 MPa, the value of Igr is approximately 360 um. Thus, h = lo/lcr 8 0.56,
Hence, the lowest equilibrium curve in Figure 3 is most appropriate for the material. The

figure shows that the transition to a flattened crack profile should occur at as580 pm, and
the corresponding yield stress should be approximately 250 MPa. In the case of a carbon-
fiber reinforced glass composite [4], the trasnsition is found to occur at ass 80um.

DISCUSSION AND CONCLUSIONS

A fracture mechanics based approach was used to analyze the yielding behavior of ceramic
matrix composites. It was shown that the matrix cracking behavior could be conveniently
conceptualized as the process of stripping of the matrix from the intact fibers. In this
way the stresses in the fibers at the crack surfaces could be estimated in a consistent
fashion.

It was shown that the maximum load transfer from the matrix to the fiber was equal to
omOAm, and this necessitated the attainment of a maximum crack opening displacement (8cr).
For a given applied stress, there was a specific crack length (2agat), beyond which the
crack attained a flattened proifile. This is consistent with micrographs (3], which show
matrix cracks with constant crack opening displacements, rather than cracks with varying
crack opening displacements, which are characteristic of unligamented cracks.

Similar to previous analyses, yielding was assumed to occur when the stress needed for
further propagation of the crack became independent of crack length.  The effect of
neighboring cracks was introduced through the factor h, which depended on the available
crack spacings. This approach may be over-simplistic, but it nevertheless provided
significant insights.  Thus, it was found that if crack spacings were too small, then the
stress needed for further propagation of the crack became suddenly constant, rather than
reaching a constant value assymptotically. This may explain why yielding is generally
discontinuous, occuring at one specific value of applied stress, rather than being
continuous, and occuring over a range of stress values.

The value of crack length (as580 um) at which the transition occurred for the SiC
reinforced glass ceramic, does appear too high, in comparison to the size of as-processed
flaws. Part of the reason may be that residual stresses were not taken into account, and
also some debonding could have occurred. Detailed calculations are now in progress.
However, the value of agat=80 um that was obtained for a carbon fiber reinforced composite
appears realistic of as-processed flaw size, and provides confidence to the analysis.
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APPENDIX - A : SHEAR LAG ANALYSIS

Consider Figure A-1 (a), which shows a single fiber and its associated matnx.t Tbhe :r:eathe
enclosed by AABB is within a short distance from the crack plane (assumec: t'o el'din e
right hand side of BB), and shear lag is assumed ®© occur here by the relative ;11 fg) o
fiber and matrix. On the left of AA there is no_shegr Iag,__and ‘h?, stressgs mb e

and matrix are ¢f0© and omO© respectively, and sqtr_sfy iso-strain vcondmons given by
equation 2 of this paper. In region AABB iso-strain conqmons are not valid. Let the vl Saae o
stresses at the plane BB, in the fiber and matrix, be of gnd am, re:-;pectlvefy.ftJ "’
unequal loads in fiber and matrix, there is d_iﬁerent stretching, vf apd \gp. Io i ee;; au
matrix, respectively. The difference, (v#vm), is equatd to the relative displacement, u.

Matrix
| Fiber
A / yam
0 | rd —=om
o T
oOn ot
T v
Oom - < | A BL-“ > om
T
| ! U je—
T
Isostrain ll Shear log V f —=
2 .
I

Fig. A-1. Shear lag analysis. (a) Deformed and undeformed unit fiber/matrix cell.
(b) Fiber stresses. (c) Matrix stresses.
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A segment of length d¢ is removed from within the region AABB. The free bodies for the
fiber and matrix are shown separately by Figures A-1(b) and A-1(c) respectively. The

magnitudes ds represent incrementalt differences in stresses between the two faces. The
shear stress I' is constant at the interface, and it oppaoses sliding of the fiber from the
matrix. The radius of the fiber is r, and its area is Af=xr2. Let the difference in
displacements between the two faces of the length d¢ be represented by v. Then, noting
that of=¢f0 and em=omO at ¢=0, it is easy to show that

dvf/d¢ = of/Ef = 2rT¢/AfEf + ofO/Et (A-1)

dvm/dé = om'/Em = 2xrT¢/AmEm + omO/Em (A-2)

where of and om' are the stresses at any position, £. Integrating, with the boundary
conditions that vi=vm=0 at ¢{=0, we have at {=( the following result,

u = mT{(VEA)+(/EmAm)}2 + {(oP/E) - (emO/Em)}L (A-3)

The terms in the second curly brackets equate to zero (equation 2 of this paper).
Substituting ¢=¢ in equation A-1, and substituting for ¢ from equation A-3, we obtain

Aef = of - o0 = (20/r) { u/=rTp }1/2 (A-4)

Equation A-4 provides the relation betwesn the extra stress in the fiber, and the relative
sliding u (between fiber and matrix) in the shear lag zone; it is equation 4 of the main
text. Equation A-4 is valid only up to a critical displacement, such that AofAf is less
than or equal to em®Am. Beyond that point the displacement and load transferred are
constant and independent of the position, x, of Figure 2; and Agf is obtained through
Equation 14 of the main body of the text.

The relation between the load transferred and the displacement, u, that is derived in
equation A-4, is significantly different from that in the literature [3,4]. In equation

(A2) of reference [4] it was assumed that all the stress in the matrix, namely om©, was
always transferred to the fibers, so that it follows from their equations (A2) and (A3)

that the fiber stress at the crack  plane also should be a constant, independent . of the
displacement, u. Although the final equation that is derived in the appendix of reference
[4] shows a relation between the stress in the fibers and u, the displacement is actually
determined as a constant, dependent orly on the far field stresses, and cannot be allowed
to vary with the value of Ktip, or the distance behind the crack tip.

The current shear lag analysis differs from the one in [4] primarily in that it is assumed
that the load transferred is only a funcion of the relative displacement, u, independent
of whether all the load in the matrix (rmOAm) can be transmitted to the fibers. At
positions behind the crack tip where citical displacements have not been reached, only
partial matrix load is transferred to the fibers. The remaining matrix load, because of
the traction-free crack surface, is transfirred to the matrix ahead of the crack tip. This
is similar to what occurs for a monolitic material containing a crack, and it is the load
transmission that produces the stress intensity factor. The current shear lag analysis
also is consistent with the main body of the text, in that the displacements, u, are
associated with the critical stress intensty, Ktip, for the matrix crack. In case all the
load in the matrix were always transmited to the fibers, independent of u, then Ktip would
be zero, and ever increasing loads would be necessary to cause further matrix cracking.
Such is contrary to experimental eviderce.

It is important to recognize that the sear lag analysis is a simplified analysis of the
complex processes that take place at the crack tip, and a more accurate finite element
analysis is probably needed to determie the load distribution among. the bridged fibers.
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