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ABSTRACT

A weak toughening limit is defined for brittle materials possessing increases in fracture resistance
comparable to the intrinsic resistance associated with bond rupture. The micromechanics of
toughening by ligamentary bridging in this limit is then coupled to crack wall displacements,
perturbed from their values in the untoughened state in magnitude alone. A self-consistent
scheme is demonstrated for calculating fracture resistance as a function of crack length using this
perturbation, allowing strengths of polycrystalline ceramics to be predicted from a knowledge of
microstructural variables.
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INTRODUCTION

A brittle material is characterized by a tendency to separate into two or more pieces, i.e. to frac-
ture, on the application of a tensile load. At failure, the system (the material plus the loading) is
at a point of instability, and if the kinetics of crack propagation are rapid with respect to the rate
of increase of the loading, the load at failure is well defined and is regarded as the "strength"'.
Clearly, mechanical energy is being exchanged with the work necessary to create the new surfaces
at the instability point, and any process which increases the surface work will stabilize the system,
thereby increasing the fracture strength (Cook and Clarke, 1988).

The microstructures of many ceramics (long regarded as the prototypical brittle materials) may
be modified so as to produce increases in the surface work on crack propagation, with enhanced
strength properties. The most spectacular example of this is probably the transformation tough-
ened zirconia materials (Marshall, 1986), in which a dilatant phase transformation is activated in
the highly stressed crack-tip region of the material, shielding the crack and absorbing energy
which would otherwise have gone into bond rupture. A somewhat more prevalent toughening
mechanism, occurring in polycrystalline materials, especially alumina (Knehans and Steinbrech,
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1982; Swanson et al., 1987), is that arising from the ligamentary bridging of the crack behind the
tip, by interlocking or unruptured grains. In this latter case, which we will focus on here, energy
is absorbed in the rupturing of the bridges, increasing the mechanical energy needed to propagate
the crack above that required for bond rupture. ug=2lpA

In order to understand the relationship between strength and microstructure the explicit form of
the increase in the surface work with crack length is needed, the connection being made through
the micromechanics of the bridging process. Here, we consider this problem in the limit of weak
bridging - identifying a "weak toughening limit" in a general sense. The parameters required to
define a strength are considered first, followed by an examination of the mechanics of toughening
by ligamentary bridges. The J-integral is introduced and used in its usual sense in the calculation
of the steady-state increment of the surface work. An explicit statement of the weak toughening
limit is then made and a self-consistent scheme demonstrated for the calculation from the J-
integral of transient fracture properties in terms of microstructural variables.
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Figure 1 plots the total potential energy of a body containing a crack of area 4 loaded by a uni-
form applied stress o,. The surface potential energy is assumed linear in the crack area:

Us=2Iy4 (1 Fig. 1. Plot of potential energy as a function of crack area for a body

. . : . N with a linear surface work under uniform applied stress.
where the proportionality constant 2T, is the surface work or (linear) fracture resistance. The PP

mechanical potential energy is given by (Sneddon, 1946)

Uy = — ¥*0,4/E @)
where E is the Young’s modulus and ¢ is a geometrical constant of order unity. An equilibrium o2 =0¢
point for this system is defined by a zero in the first derivative of the total energy, or e /01
dUg/dA = — dU,,/d4 (Equilibrium) (3a)
UNSTABLE
and the equilibrium is unstable if the second derivative is negative at this point, or i gggm’;H
2 2 2 2 i m .
d°Ug/dA” < — d°Uy,/d4 (Instability) (3b) 9
<
[
The applied stress for the system in Fig. 1 has been chosen so as to create a a point of unstable 2
equilibrium for the crack area 4,. Any increase in o, beyond ¢, makes it energetically favorable & yZ
for the crack to increase in area, and if the kinetics of this non-equilibrium propagation are rapid w STABLE GROWTH
o, is perceived as a strength. 2 l BEGINS
(3]
b=
Obviously the mechanics of the system become more complicated if the surface potential energy & |
is a general, non-linear function of crack area. Thus it is usually more convenient to operate with
the first derivatives of the energy functions: the mechanical energy release rate, |
G = — dU,/d4 4) Ao
. RACK A
and the fracture resistance, CRACK AREA,A
R = Gl 04 6) Fig. 2. Plot of fracture resistance as a function of crack area for a body
@ P . i y . . with non-linear, increasing surface work (logarithmic co-
Thiespointof squilibfninstability efincd by (3 i how given by ordinates). The dashed lines indicate mechanical energy release
G =R and dG/d4 > dR/dA4 (Unstable Equilibrium) 6) rates at the beginning of stable and unstable crack growth.
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As we are usually interested in the changes in the independent variable o, giving rise to the ful-
fillment of (6), and as o, appears only as an amplitude term in (2) it is convenient to work in
logarithmic co-ordinates, so as amplitude changes appear as linear shifts. A strength prediction
from an R-curve plot is shown in Fig. 2. For stresses below o, the system is unchanged, as none
of the requirements of (6) are met. As the stress is increased above o, stable growth of the crack
begins, as the first but not the second condition of (6) is filled, until at o, = o, the conditions of
(6) are both met and the system fails. The shape of the R-curve has dictated the extent of stable
growth beyond A,, and the increase in strength from o, to o, The next section examines the rea-
sons underlying R-curve behavior leading to this enhanced strength for materials toughened by
ligamentary bridges.

WEAK TOUGHENING BY LIGAMENTARY BRIDGES

The increasing R-curves of a steel, a zirconia, and a polycrystalline alumina are shown in Fig. 3
(Gudas and Alexander, 1981; Swain, 1986; Readey et al., 1987). (From this point forward we
will discuss crack propagation in terms of the linear variable c, the crack length, under the as-
sumption that the crack area may be expressed in terms of this single parameter, and that the
mechanical energy release rate is similarly expressible, e.g. as for linear through-cracks or circular
cracks.) All three materials show a tendency to an upper plateau of R at large crack extensions.
In the case of steel, the sample was tested under plane stress conditions and the increasing value
of R reflects the growing size of the plastic deformation zone around the crack tip during propa-
gation. The plateau occurs when the zone size becomes fully constrained at the onset of plane
strain conditions or by the sample size. For zirconia, the increase in R reflects the gradual for-
mation of a transformation zone about the crack, followed by the dissipation of energy as the
transforming particles are irreversibly unloaded in the crack wake. Steady-state is reached when
the initially transformed particles are completely unloaded. The mechanism of increasing R for
the alumina is as follows. Up to a crack extension of d the resistance is that of the weak interfaces
in the material (typically the grain boundaries), R = 2T, . For ¢ > d bridges form behind the crack
tip by either interlocking or unruptured grains, probably aided by any residual stresses fixed in
the structure during processing, at average separation d. As the crack propagates more and more
bridges are formed and the increasing fracture resistance reflects the work done deforming the
bridges, or overcoming the friction during bridge pullout, R > 2I', . Eventually, at a crack length
c*, the first bridge formed ruptures as a comsequence of the increased crack opening and a
bridging zone of constant size (c* — d) propagates with the crack giving rise to a plateau resist-
ance R = R..

The inherent brittleness of the alumina is reflecied in the low absolute values of R at similar crack
extensions for those in the steel and zirconia. However, more important to us here is the relatively
low increase of R to the steady-state value: about a factor of three for the alumina, compared
with an order of magnitude for the zirconia, and over two orders of magnitude for the steel. The
small increase is an indication of the weak energy absorption by the bridging ligaments in com-
parison to the interatomic bonds. Hence we may refer to this material, and others which behave
similarly, as "weakly toughened", as the fracture resistance increases are comparable to the in-
trinsic fracture resistance associated with bond rupture. In the next section we present the
mathematical framework to describe the increases in fracture resistance by bridging, and relate
the steady-state fracture resistance to the work necessary to rupture a ligament, thereby permit-
ting an exact definition of a "weak toughening limit". Explicit advantage will then be taken of
the weak toughening in these materials to derive transient fracture resistance curves.
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Fig. 3. Plots of fracture resistance as a function of crack extension for
steel, alumina, and zirconia.
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THE J-INTEGRAL AND STEADY-STATE FRACTURE RESISTANCE

A powerful method for calculating the fluxes of energy arising during crack propagation is the
use of the J-integral which involves the integration of the strain energy density and the work done
by tractions in a body, along paths beginning and ending on opposite crack faces. As the integral
is path-independent, equilibrium conditions may be generated by appropriate summation of dif-
ferent integrated paths. The integral is defined over a path .S by (Kanninen and Popelar, 1985)

J= f [@dz — T+ (du/dr)ds] Q)
S

where @ is the strain energy density and T is the traction vector (defined by T, = 0,1, , where
o, is the stress and n, is the normal to the integration path element ds ). u is the displacement,
over which the tractions do work, and dr and dz are coordinate system elements. (We concentrate
on a system with circular symmetry, where r is a radial co-ordinate in the crack plane.) Making
a circuit beginning at the crack mouth, around the exterior of the specimen, followed by return

to the starting point traversing the crack surface leads to
Jo=J,—=J=0 (8)

where J, = G, is the experimentally determined contribution to the path from the applied
loadings, J, = 2I', the contribution from the interatomic bond rupture processes , and J, the con-
tribution from the ligamented zone. (Here we have taken the usual convention that anticlockwise
paths are positive. The sum over the paths is zero as there are no sinks of energy within the
complete circuit.) For paths along the crack face there is no contribution from the strain energy
(dz = 0) and the J-integral is simply expressed in terms of the tractions exerted:

c c=b
J,‘=f - Te(du/dr)ds —f — Te(du/0r)ds )

where c is the crack length, b is the length of the bridged zone, and T represents the tractions
exerted by the ligaments in the zone. An individual ligament exerts a force resisting extension
approximated by o(u)d?, where d is an average ligament separation and hence o(u) an effective
ligament stress. If we assume that the ligament forces act only normal to the crack face, such that
the only non-zero component of T is T, = o(u), where we now take u to be the local displacement
of a crack wall, and ds = dr, (9) may be written as

J,=- 2f o(u)du (10)

0
where « is the semi crack opening at the end of the bridged zone (ie at r = ¢ — b). (10) relates

the J, term to the area under the o(u) curve. The ligament at = d undergoes the cycle from
u = 0atc <dtou=u*atc = c* during crack extension.

In steady-state crack propagation the crack opening at the end of the bridging zone is equal to
that necessary to cause ligament rupture. If we write this critical crack opening as 2a = 2u*, the
integral in (10) may then be evaluated explicitly:

-
JM = 2f0 o(u)du = 2T, (¢5))

The maximum increment in the work of fracture is equal to the work per unit area necessary to
rupture a ligament, 2T',. The steady-state work of fracture is given by R, = J, + J,™> = 2T, + 2
T',. A weakly toughened material is then defined as one in which I'y and T, are comparable.
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THE WTL AND TRANSIENT FRACTURE RESISTANCE

The material property which controls toughening by ligamentary bridging at the most funda-
mental level is the stress-extension function for the bridges, o(x). We choose here for illustration
ligaments dominated by a decreasing component, in which case the constitutive equation of the
ligament may be written (Cook et al., 1987)

o(u) = — o*(1 —u/u*)™ (12)

where o* is the magnitude of the peak restraining stress, and m is an exponent characterizing the
nature of the restraint. Inserting (12) into (10) and integrating yields

J,=2T[1 = (1 — o/u*)"*"] (13)

However, the equilibrium profile of the crack depends on the total fracture resistance, R, which
includes the contribution from J,.That is, a=a(J,), aad we are left with an implicit equation for
J,. Basically we require a(c) , remembering that « is the crack opening at r = d , to obtain J,(c).
To this point our analysis has been exact and it is the specification of a(c) in the weak toughening
limit that our approximation is introduced.

We may write an equilibrium relation for a(c) for fracture resistance forces infinitesimally local-
ized at the crack tip (Sneddon, 1946):

o= xP(Ga’/EC)l/Z(CZ — A (14)

(14) has two exact limits for a bridged crack. The fisst is that there is no bridging atall, I', = 0,
in which case G, = 2T, and

a = ay = Y(2Ty/Ec)'*(c* — d»)'? (15)

The second limit is that the bridging is totally coastrained to a region about the crack tip,
¢ > > c*, in which case G,/ = 2Ty + 2T, and a = a* > &, (15) is really a first-order perturbation
on the untoughened profile (and somewhat equivalent to the assumption made in the earlier work
of Cook et al., (1987)) but is not self-consistent in that increasing the toughening does not alter
the crack opening. A second-order, and self-consistent, perturbation maintains the shape of the
profile, but iteratively solves for the opening displaccments, relaxing the constant bridging con-
straint and the localization constraint.

We begin our derivation of a self-consistent weak toughening limit (WTL) by writing the equi-
librium relation (8) generally, as

G/ =2Ty+J,

= 20 (1 + (T,/Ip)(J,/2T )] (16)
and hence we may write a using (14) and (15), as
a = agl + (T,/To)U,/2T 12 a7

where we relax the constraint that J, maintain constiancy at either of its extreme values, but still
imagine that the microstructural influence is localized to a crack tip region. (17) inverts to yield

J, = 2T [(a/u*)*/(ag/u)* = 11/IT;/T) (18)

2753



Simultaneous solution of (13) and (18) self-consistently yields the extent of fracture resistance
increase, J,/2T,, as a function of the degree of ligament opening, a/u*. Crack length is intro-
duced by the parameter a,/u* via (15). (Coupling the degree of fracture resistance increase to
the crack opening at r = d essentially breaks the localization condition.) There is an upper bound
to this latter parameter of

(ao/u*)™ = (1 + T,/ T * < 1 (19)

Combining (15) and (19) then specifies the crack length at which the fracture resistance attains
its steady-state value

c* ~ u*’E/Y°R,, (20)

Figure 4 plots (13) and (18) for different crack lengths indicating the points of simultaneous
solution. Figure 5 plots the R-curve derived from these points and also plots the R-curve derived
from the first-order perturbation which does not maintain self-consistency. As can be seen the
self-consistent WTL reaches steady-state fracture resistance at shorter crack lengths than the
first-order WTL, a consequence of the greater crack openings required to maintain equilibrium
in the former. Also plotted in Fig. 5 are the mechanical energy release rates at the points of un-
stable equilibrium for the two R-curves. The self-consistent WTL predicts a greater strength, and
greater crack length at failure than the first-order WTL, for cracks in a material of initial length
~d (as might be expected in a typical microstructure), highlighting the sensitivity of strength
prediction to the exact shape of the R-curve.
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Fig. 4. Plot of the extent of fracture resistance increase as a function of
the extent of ligament opening. The solid line is an exact pre-
diction from the J-integral, the dashed lines indicate points of
solution as a function of crack length in the self-consistent weak
toughening limit.
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Fig. 5. R-curve plots for the self-consistent and first-order weak
toughening limits. The dashed lines indicate the points of in-
stability for uniform applied stresses, and show the greater
strengths predicted by the self-consistent solution.
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