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ABSTRACT

In this paper the problem of a finite line bond between two thin layers with different elastic and
geometric parameters is considered. A system of singular integral equations of the second kind
is obtained for the contact stresses along the bonded region. The integral equations can be
solved numerically by using an appropriate numerical quadrature scheme. It is found that the
evaluation of the kemels is generally difficult for thin layers and a technique using residues is
suggested to overcome these difficulties. Numerical results are obtained for some combinations
of materials and geometries. It is found that the ratio of the layer thicknesses and shear moduli
affects the stress intensity factors when the layer is very thin.
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INTRODUCTION

There are many reasons for using coatings and thin films. In the area of microelectronics thin
aluminum films are used to carry current in the interior of a chip or an electronic circuit board.
In tribology coatings are used to reduce friction or to increase wear resistance. These coating or
thin films provide a useful purpose as long as they adhere to the surface. However, one of the
common failure modes is delamination and is thus the generic problem of an interfacial crack.
Therefore, the analysis for a crack lying along the interface of two elastic bodies is critical.

Williams (1959) first showed through an eigenfunction approach that the near crack-tip field
appears to possess an oscillatory singularity. England (1965) and Erdogan (1965) studied the
plane problem for a finite length crack at the interface. Erdogan and Aksogan (1974) analyzed
the mixed mode behavior of a two-dimensional crack near an interfacial boundary. England
(1965) also obtained the explicit forms for the crack opening displacement and showed that this
type of oscillation is physically inadmissible because interpenetration near the crack tips will
occur. This mathematical difficulty was removed by Comninou (1977) by introducing contact
zones. Some techniques to measure adhesion at the interface also have been developed.
Charalambides er al (1986) proposed a test for determining fracture resistance once the coating
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has a crack. Ting et al (1985a,b) devised a bending test specimen for the determination of the
fracture resistance. Williams (1970) proposed the pressurized blister test to study the strength
of the interfacial bonds. A further analysis for the Williams' blister test was made by Farris and

Keer (1985).

In this paper, an interfacial external crack problem for two perfectly bonded finite dissimilar
infinite strips is discussed. A system of singular integral equations of the second kind was
obtained by Keer and Guo (1988) for the normal and shear stresses along the bonded region,
and can be solved numerically by using an appropriate quadrature scheme by Miller and Keer
(1985) if the kernels can be evaluated properly. For thick layers, the evaluation can be done
easily, and some results have been obtained by Keer (1974) and Keer and Quo (1988).
However, for thin dissimilar layers the kemels will oscillate, and the evaluation becomes
difficult. A technique to evaluate the kernels for thin films is suggested in this paper. Some
numerical results are given for both thin and thick layers. It is found that the geometry and
material constants have a more important effect on the stress intensity factors for thin layers
than for thick layers.

THEORETICAL ANALYSIS
The geometry and coordinate system is as shown in Fig.1. The contact length is 2c , the shear

moduli are p1, w2 and Poisson's ratios are v1,v2 . The boundary and continuity conditions can
be expressed as

ox(x,y)lx=-h1,n2=0, Oxy(*.y)lx=-h1,h2 = 0 (1.a,b)
ox(D(0,y) = 0x(2(0,y) = G1(y)H(c-lyD 2.2)
oxy(D(©0.y) = oxy(P(0.y) = G2(y)H(c-lyD @.b)
auDy) @0y vy _av®.y)

dy = dy i dy - dy (3-a,b)

where the superscripts (1) and (2) refer to the upper and the lower layers, respectively, while
H(x) is the Heaviside step function.
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Fig. 1 The geometry and coordinates
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A system of singular integral equations of the second kind can be obtained for the stresses
Gj(y) and G(y) along the bonded region by using the Fourier transform (see Keer (1974) or
Keer and Guo (1988) for details). The equations can be written in dimensionless form as

x1—1 x2-1 pp K1+l o+l lf(t) 1 1
- —]f(y) + = [— + =—=dt + — [ K(y,t)f(t)dt
Hal K1 M2 163 i [ H1 H2 ]-{ ty n-{ IR
| L]
+— {Kz(y,t)f(l)dt +— {K3(y,t)f(t)dt =1 (C))
2mi - 2mi -

with equilibrium condition
1
{ f()dt =0 5)

Here, the following dimensionless substitutions are introduced
y=ylc, t=tc, hy=hi/c, ha=hysc, (6)

£5) = —2—[G1(cy) + iGa(cH) 1 , @)
1+x2

For the sake of convenience, the ( ~ ) notations are dropped in eqn. (4) and thereafter. The
kernels Kj(y,t), K2(y,t) and K3(y,t) are given in the Appendix.

NUMERICAL ANALYSIS

By using the method given by Miller and Keer (1985), integral equations (4), (5) were solved
numerically. Suppose that the solution to eqn. (4) is of the form

(1) = ¢()/w(v), w(t) = (1-0*(1+%2, Iti<1 (8.a,b)
where
1 . .
a) = —2-+1B , o2 =% -ip (9.a,b)
B = -—Hog SILZHL, 9.0

2n T KoM +H2

and the function f(t) is approximated by piecewise quadratic functions. The stress intensity
factors are defined by

Ki+iKp=+c yli!—n>l (l-y)a1(1+y)a2 (Ox+iOxy) = '11;20’()\/5 o(1) 10)

Because the kernels contain the trigonometric functions of x(t-y)c/h as integrands, which
oscillate rapidly when It-ylc/h is large, the evaluation of the infinite integrals is difficult for large
c¢/h. Thus the numerical results given in most the literature are only for c/h less than about 5. To
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find a simple representation for these kerrels for large values of It-ylc/h, one can develop a

r;sidue exgansiopn by using contour integrition in the upper half plane for K;(y,t) and in the

first quadrant for K3(y,t) and K3(y,t) in thecomplex plane.

The poles z=x+iy of the integrands in the complex z plane are determined by the equation
eZ+¢2-22-2=0 (11)

The location of the k-th pole is found by solving equation (11) numerically. The first several
poles in the first quadrant are given in Table 1.

Table 1. Location ¢f poles of the integrands

k Xk Yk k Xk Yk

1 4.501457223 8.424784461 6 7.433535359 40.477035416
2 5.537356566 14.995352556 7 7.717617986 46.796710451
3 6.206297492 21.4250747% 8 7.966283281 53.109094531
4 6.704419770 27.799919418 9 8.187409850 59.416239651
S 7.102174694 34,146729706 10 8.386502941 65,719482010

By using contour integration in the upper half plane in the complex z plane and eqn. (5), one
can obtain

1

o 2
X x(t-y)
-{ f(t) mcos 3h dx dt
1 |t-y| 2
= [ [-3n—g—+Re(Z2niResF1(zk)]dt (12)
-1
where
_1 z2 (ith-yl) (13)
F1(2) =T emreza2s *Pligh

and ResF](zk) stands for the residue of the function F1 at the k-th pole zk in the upper half
plane. For K2(y,t), using the contour integration in the first quadrant of the complex z plane,
equation (5) and the antisymmetrical propety of G2(y), one can find

1 oo,
2-2x+x2-2e"X . x(t-y) . x(t4))
-{ f(t)J m(SInﬁL +sm-—-—*—-2h )dxdt

1
= { f(t)[sgn(t-y)Im(2riZResF2(zk,t-yl)) - '

. 2h 2h
- sgn(t+y)Im(2riZResF2(zk,It+yl)) - " ?'W
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+ 2nsgn(t-y)+2nsgn(t+y)]dt (14)
where
2-2z+422-2¢2 .0z
Fa(z,) = m— exP(li_h_) (15)

and zy, which are given in Table 1, represents the k-th pole of F5 in the first quadrant. Similar
residue expansions can be obtained for K3(y,t).

The evaluation of the kernels consists of the residue expansions, which decay exponentially,

provided that It-yl/h #0, and hence converge rapidly. The error should be O(e-33t-yl/hy
for a ten term residue expansion. Thus, this method for the evaluation of the kernels is good
for large values of It-yl/h. If the interval [-1,1] is divided into N subintervals, the minimum
value of It-yl is 1/N in Miller and Keer's numerical scheme (1985). The error for N=10 and
h<0.25 should be O(10-6). It should be noted that the 1/(t-y) term in eqn. (14) appears
singular, but is not because the residue expansions are efficient only for large values of It-yl/h
and diverge when t=y. In our numerical calculations, the residue expansions are used only for

lt-yl/h = 0.4.

The numerical results for identical materials and thicknesses for the upper and lower layers are
compared with Keer's results (1974), which were obtained by using Erdogan and Gupta's
numerical scheme (1972) for this special case. The numerical results obtained from the two
different methods are seen to be the same (Table 2).

Table 2. Comparisons of the intensity factors for two identical layers

hy Kn_ Kn . .
S - (Keer (1974)) — ( This analysis )
0.25 .0705 07054 *
0.5 .0995 09974 *
1.0 .141 .1410
20 193 1930

* These two values are obtained by using residue method.

Numerical calculations were carried out for different combinations of materials and geometries.
Table 3 gives some numerical results for different shear moduli and Poisson's ratios. Both
tables show that the material constants have a more important effect on the stress intensity
factors for thin layers than for thick layers, and that the dependence of the stress intensity
factors on the Poisson's ratios is significant for a low ratio of the shear modulus of the coating
compared to that of the substrate. Table 3.a also shows that the shear moduli do not affect
stress intensity factors K significantly for thick layers, if the shear modulus of the layer is
several times that of the shear modulus of substrate. From table 3.b one can see that the shear
moduli have an important effect on the shear intensity factors Ky .

Table 4 gives some results for different Poisson's ratios v; and V2, and the thickness ratios
h1/h2 with uy=p1>. From Table 4 one can see that the Poisson's ratio has an important effect on

the tensile stress intensity factor, Ky, but not upon the shear stress intensity factors Kj1. From
Table 4 one can also see that, for thick layer problem (i.e. the thickness of the coating is not

3077



Table 3.2  The stress intensity factors (10xK{GoVc )
for different shear modulus
15 ”’/.a 0.1 0.25 0.5 1.0 120 | 30| 40 ] 60 8.0 10.
A\ h 2
5h, |--0187 -.0305|-.0269 [0113 |.0876 |.1644 |.2140| .2808 | .3227] .3507 | v1=0.2
oo |-.0195| -.0336]-.0308 |0240 |.1934 |.3695 |.5323|.8141| 1.045| 1.239 v2=0.3
71_, -.0128] -.0161]-.0013 [ 0495 |.1425 |.2083 |.2552|.3158 ] .3524] .3760 v1=0.3
025 oo |-.0134] -.0175| .0013 0828 |.2871].4839| .6602| .9566| .1195{ .1390 | vV2=0.3
Shy |-.0025{ .0069 0361 |.1002 |.1973 |.2596 | .3019| .3542| .3842] .4025 v1=0.4
oo |-.0024] .0091 | .0508 |.1665 |.4115].6307 | .8205| 1.130] 1.373] 1.568 | v2=0.3
Shy | .0746] .1836 | .3395 |.5583 |.7818 |.8804 | .9281] .9643 .9715| .9696 | v1=0.2
oo 0752 .1864 | .3479 |.5791 |.8230 |.9356 | .9933] 1.042] 1.058 1.061 | vV2=0.3
] Shy | .1071] .2483 | .4325 |.6668 |.8781 |.9582 | .9908 | 1.007| 1.002| .9922 | v=0.3
co 1079|2520 | .4432 [.6919 [.9252 [1.020 | 1.062 | 1.090| 1.092| 1.088 | v2=0.3
Shy | .1539] .3388 | .5578 |.8048 |.9920 |1.046 | 1.059 | 1.051] 1.033] 1.015 | v;=0.4
oo 1550] .3439 | .5717 |.8358 [1.047 [1.115 |1.138 [ 1.140 1.128] 1.115 | v2=0.3
Table 3.b  The stress intensity factors (10xKGovc )
for different shear modulus
AN ':'/u, 01| 025]0s]|10|20]30]40]60]80 10.
= 25hl 0386 | .0924] .1678] .2745| .3940{ .4597] .5022| .557% .5932 1.6200| v;=0.2
o 1.0406 |.1039] .2071] 3911} .6797| .9004| .1079} .1362 1581 |.1761]|Vv2=0.3
sh, |-0461 10661 .1866] 2939 4092 .4721] .5134] .5674] .6033 |.6307| v,=0.3
025 1288 [ 1215 2355| 4321] .1337] 9630] 1.148| 1.441[ 1.668 [1.851] v2=0.3
5hy |.0545 12151 20521 3113] .4223] .4832] .5239] .5780 .6150 |.6431 v;=0.4
o |.0581].1410] .2661| .4754] .7921] 1.032 1.227] 1.532] 1.767 |1.956] v2=0.3
shy |-3372 7210 1.175] 1.754] 2.41¢ 2.821] 3.105] 3.489%4 3.739 |3.915| v;=0.2
o |.3385(.7273] 1.192] 1.791] 2.485] 2.913] 3.215| 3.624 3.892 | 4.082 v2=0.3
Shy |.3539 7555] 1.230] 1.835] 2.523] 2.938| 3.226| 3.605{ 3.847 [4.015] v;=0.3
1 o |.3554 | .7524] 1.248] 1.875] 2.597| 3.037| 3.343] 3.748 4.007 |4.188 v2=0.3
shy |.3731 79591 1.296] 1.934] 2.654 3.079] 3.367| 3.737} 3.967 |4.124| v4=0.4
- |.3748.8035] 1.316] 1.978| 2.735] 3.185] 3.492| 3.889) 4.136 |4.305 v2=0.3

]

much smaller than the contact length), the solution for a ha!f—plane substrate provides a
E% approximation, if the thickness of the substrate is several times that of the thickness of
coating, but this conclusion is not true for the thin layer problem.
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Table 4 The effect of Poisson's ratio on the stress
intensity factors (10xKOovc )

& 0025 ¢ c
f:/ ¢
EAND) 04 (03 0.2 0.4 0.3 0.2
K| 04951] 00592 [-.02592 | .66681 | .54241 |.44601
04 Ko | 29385 27113 | 24849 | 1.8348| 1.7421 1.6662
s | os| K| 10024] 04551 | OTI33 | 80483| 66681 | 55831
Ko | 3112929387 | 27446 | 19337 1.8348 | 1.7542
K |-14955|.09301 | 04951 | 93662 .78553 | .66681
02 Iy [ 32062 30918 | 29388 | 2.0251| 19201 1.8348
K |-06572| 01154 |-02688 | .68691| .55869[ 45804
041 n | 35622] 32408 | 29332 | 1.8649] 1.7696 | 1.6916
K |.13062| 06571 | 01819 | .82943| .68691].57507
10 | 03[ 71738267 35608 | 32864 | 1.9665] 1.8649| 1.7820
K |-19523| 12122 06572 | 96572 .80948 | .68691
0.2 " 39856 37911 | 35613 | 2.0604| 1.9525 | 1.8649
K |-08285]|.01605 |-02955 | .69193| 56263| 46119
041w [.43226].38453 | 34201 | 1.8750] 1.7787 ] 1.6998
Ki | -16650].08283 | 02405 | .83575| .69193[.57913
® | 03[ kg | 47538 43213 [ 39111 | 1.9778] 1.8750] 1.7912
K |.25370].15420 | 08283 | 97339] .81561] .69193
0.2 gy |.50655].46971 | .43216 | 2.0728| 1.9636 1.8750

CONCLUSION

An interfacial external crack between two perfectly bonded finite dissimilar infinite strips is
discussed, and a numerical technique applicable for a thin layer is suggested. Some results are
given for both thick and thin layers. It is found that the stress intensity factors for thin layers
(but not necessarily thick layers) are sensitive to the ratio of the thicknesses and the elastic
constants. Furthermore, the geometries and the material constants on the stress intensity
factors is more significant for the thin layers than for thick layers. The Poisson's ratios have an
important effect on stress intensity factors for low ratios of the shear modulus of the coating to
that of the substrate. The stress intensity factors Kj and K[y are not too dependent on ratio of
the shear moduli when the magnitude of the shear modulus of the layer is much greater than
that of the substrate; however, for thin layers the opposite is the case.
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APPENDIX

H2 1 *2-2x+x2-2e-X - x(t-y)

Ka(y.0) = (1 H2 1
2(y,) = (1+x1) i1 281 XrexxZa SNR; dx+
1 52-2x+x2-2e7X . x(t-y)
(14x2) TEEJ Ll R dx (A1)

2 1 S2+42x+x2-2e"X . x(t-y)

k3(y,;) =(1 ==
300 = (D) oy § “exerx2z T2h X+

1 S242x+x2-2e7% . x(t-y)
(1+x2) m({ R ie Al sin’ ) dx (A2)

_ w2 1 5 x2 x(t-y)
Ki@y,n = (1+K1)Em({ mcos#dx -

(14x )L L x2 X(t-y) !
D3h; | Krexxds ™ 2my I (A3)
K2(y,t) = ka(y,t) - k2(y,-t),  K3(y.t) = k3(y,t) + k3(y,-1). (A4)
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