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ABSTRACT

Mode I crack-tip stress and strain fields are presented for pressure-sensitive dilatant materials
under plane strain conditions. We adopt a yield criterion which is a linear combination of the
effective stress and the mean stress. We assume that plastic deformation obeys the normality
flow rule and material hardening follows a power-law relation. The low-hardening solutions of
the crack-tip stress fields are found to agree with the corresponding perfectly plastic solutions.
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INTRODUCTION

In classical plasticity theories, it is generally assumed that hydrostatic pressure has no effects on
material plastic deformation, and plastic dilatancy is neglected. This type of plasticity theories,
with a popularly used yield criterion due to Von Mises, is applicable mainly to dense metals.
By constrast, rocks, concretes, soils and other porous materials exhibit plastic volumetric
deformation and pressure-sensitive yielding at large strain. Recently, toughened polymers and
ceramics due to their outstanding mechanical properties have attracted tremendous research
attention. Experiments on these two classes of materials support a constitutive description
which accounts for pressure-sensitive yielding and plastic dilatancy.

Richmond and Spitzig (1980) observed that for polyethylene and polycarbonate the flow stress
has a linear dependence on hydrostatic stress. Carapellucci and Yee (1986) performed biaxial
tension tests on glassy bisphenol A-polycarbonate and found that a modified Mises yield
criterion with a dependence on the hydrostatic stress can fit their experimental data well.
Recently, Sue and Yee (1988) investigated the toughening mechanisms in a multi-phase alloy
of Nylon 6,6/Polyphenylcne oxide, and found that there is a considerable amount of plastic
volumetric change in the composite material due to the formation of crazes at large strain.
They concluded that toughening of the material can be achieved by inducing a large amount of
volumetric deformation due to crazing and subsequent shear localization of plastic deformation
around a crack tip. The phenomenon of pressure-sensitive plastic yielding is also observed in
transformation-toughened ZrOs-containing ceramics, for example, see Chen and Reyes Morel
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(1986).

Dominant asymptotic crack-tip field solutions based on the Mises yield criterion with no de-
pendence on the hydrostatic stress have been given by Hutchinson (1968), Rice and Rosengren
(1968) for pure-mode fields (HRR solutions) and by Shih (1974) for mixed-mode fields. In this
study we investigate crack-tip stress and strain fields for pressure-sensitive dilatant materials.
A yield criterion with a linear dependence on the hydrostatic stress and the normality plastic
flow rule are adopted to take account for plastic dilatancy. Plane-strain mode I asymptotic
crack-tip fields are obtained. The corresponding perfectly plastic solutions of the crack-tip
fields are discussed in the light of the power-law hardening solutions.

CONSTITUTIVE RELATIONS

We afiopt a simple yield criterion which is a linear combination of two stress invariants, the
effective shear stress 7, and the mean stress o,,. The yield criterion is written as

P(oij)=Te+pom=Q (1)

where 7, = (5j5i;/2)1/2, 0 = (1/3)0kk, $ij = 0ij — Ombij, and (o;;) represents the current
yield surface in the stress space. The material constant u measures the pressure sensitivity of
yielding. The yield criterion, equation (1), can be represented by a straight line in the 7.-o,,
plane as sketched in Fig. 1. The characteristic yield strength @ can be taken to depend upon
the plastic work W?. We introduce the generalized effective shear stress 74, and the generalized
effective tensile stress o, defined by og./ V3= Tge = Te + it 0. The outward normal of the
yield surface in the stress space is s;;/(27e) + péi;/3.

A direct measurement of the pressure sensitivity factor u relies on shear experiments under
pressure. It can be also obtained from the difference between the compressive yield strength
o. and the tensile yield strength o; through the relation p = \/§(ac — 0¢)/(0c + o¢). Another
method to determine u is to perform compressive tests under pressure p. Let 00 denote the
compressive strength without pressure, and o? the compressive strength under pressure p.
When experimental data can be fitted by the linear relation o2 = 0% + ap, the value of u
can be calculated through g = \/ﬁa/(3 + a). The experimental curves given by Carapellucci
and Yee (1986) show that the u value for glassy bisphenol A-polycarbonate is about 0.14. For
ZrO2-containing ceramics, Chen and Reyes Morel (1986) reported that the constant @ may
approach to 2.0 which corresponds to u = 0.69. Note that the pressure sensitivity factor u
generally depends on the current stress and deformation state. In this study a constant p
is presumed for a given material for simplicity to explore the major features of the effects of
pressure-sensitivity on crack-tip fields.

In this analysis the material shear response is specified by the Ramberg-Osgood relation

v/70 = 7/70 + a(T/70)" (2)

where 7 is the shear strain, 7 is the shear stress, n is the strain hardening exponent, a is a
material constant, and 75 and v are the reference shear stress and the reference shear strain.
Within the context of deformation theory of plasticity, the relation between shear stress and
plastic shear strain (the second term on the right-hand side of (2)) is generalized to multiaxial
state by assuming that the yield surface expands isotropically and the plastic strains obey the
normality flow rule. The resulting relation between stress o;; and plastic strain cfj is
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The stress-strain relation (3) is based on the deformation theory of plasticity. Incremental
constitutive equations accounting for pressure-sersitivity and plastic dilatancy can be found,
for example, in Rudnicki and Rice (1975) and Needleman and Rice (1978).
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Fig. 1. Sketch of a yield surface illustrating the geometric interpre-
tation of the pressure sensitivity factor p. For normality
plastic flow, the factor u also serves as the plastic dilatancy

factor.

PLANE-STRAIN MODE I CRACK-TIP FIELDS

We condider a planar crack problem depicted in Fig. 2, where the Cartesian coordinates
(z1,z2) and the associated polar coordinates (r,0) are centered at the crack tip, with the z3
axis being perpendicular to the z;-z; plane. When the crack tip is approached, the elastic
strains are negligible compared to the plastic strains. Invoking the plane strain condition leads
to the equation sas/(27)+u/3 = 0. By solving this equation for the stress component o33, the
mean stress o,, and the generalized effective stress 7g¢ (or gge) can be expressed in terms of
the three in-plane components 011, 022 and o12. Substituting these expressions into (3) gives

the following stress-strain relations in plane strain

1
en 1 Toesn [5(011 — 022) ]
— =ca(—=— —+t
Yo 2 ( ) ) Te 5

1 —
€22 - la(rge > [2(”22 o11) +“] (4)
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2 2
where 74 = [1 - %uz]llq [2(o11 — 022)* + U%z]” + £(011 + 022)-
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It is more convenient to describe the crack-tip fields in terms of the effective tensile stress
0. and the generalized eflective tensile stress oge (rather than 7. and 7,.) for a crack under
mode I loading. With o = V3 1 and ¢ = 70/\/5, an alternative expression of (4) can be
obtained. We follow the solution procedures of Hutchinson (1968) for Mises materials to obtain
the dominant asymptotic crack-tip fields for pressure-sensitive dilatant materials. The outline
of the procedures is as follows. An Airy stress function of seperable form of 7 and 6 is employed
to satisfy the equilibrium equations. The strains are expressed in terms of the stress function
using the constitutive law (4) and then are inserted into the compatibility equation. A fourth
order nonlinear ordinary differential equation with 8 as the independent variable is obtained.
The traction-free condition on the crack faces and the symmetry or antisymmetry condition
(depending on the remote loading, mode I or II) provide the necessary boundary conditions
for the differential equation. A combined fourth-fifth order Runge-Kutta integration scheme
is employed and a shooting method is used to generate our solution.

T2

Crack

Fig. 2. Conventions at the crack tip.

Following the argument given by Rice and Rosengren (1968), the singular crack-tip stress,
strain and displacement ficlds can be written as

7 1/(n+1)
ij = 0ij 91 )
0ij = 0o [aaoeol(n,u)r] Gi;(0;n,pn)

J n/(n+1)
= T e - - 5
€5 [GUO‘OI(TL,#)T] 6”(0,17,,”) ( )
J n/(n+1)
. aaveol(n, p)r ii(0;n, ).
i €T [aaoeoI(n,u)r] wi(0;n #)

The dimensionless constant I and the 6-variations of the dimensionless functions, &;;, &; and
i;, depend on the strain hardening exponent n and the pressure sensitivity factor u. These
angular functions are normalized by setting the maximum value of the generalized effective
tensile stress Gge to unity. With the normalization in (5), J represents the magnitude of
the singularity amplitude of the crack-tip stress and strain fields. Note that J can not be
determined by the asymptotic analysis since it depends on the geometry and loading of the
cracked body.
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We restrict our attention on mode I loading which is symmetric with respect to the crack.
The asymptotic crack-tip fields, written in the seperable form as in (5),. when' p= 0, redu-ce
exactly to the mode I HRR solutions. In this study, the angular functions, 7;;, €; and u;,
are obtained numerically for n=2 to 100 and for g < piim- Here pim depends on the material
hardening exponent n. Our p = 0 solutions for all n’s are exactly the same as the tabulated
values of the HRR. solutions given by Shih (1983). We found that the values of the constant [
decreases monotonically with an increasing n or u, and a large piim corresponds to a large n
(low hardening).

We present the solution of the crack-tip stress and strain fields for n=2>5 (int(irmediatf! hard-
ening) as a representative case. The §-variations of the normalized stresses, Gij .a.x}d T ge, for
u = 0, 0.1 and 0.2 are plotted in Fig. 3 to show the effects of pressure se.ns1tw1ty on the
singular stress fields. The solutions for p = 0 give exactly _the HRR ~cra»ck-t1p stresses. The
hoop stress ggg at 6 = 0 decreases much faster than the radial stress Grr d_oes as p increases.
Consequently, a large p gives a small difference between the hoop stress g and the radial
stress oy at 8 = 0. The mean stress & at § =0 (note that & # (8rr + G96)/2 when p #0)
decreases as p increases.

The generalized effective tensile stress Gge (reducing to Ge when p = 0) is found to peak at
somewhere between 90° and 100° (this is true for all values of n and p < fim)- The peak
value of the shear stress &,¢ occurs at about 90° for = 0 and at a larger angle for a larger p.

The #-variations of the normalized strains &; and éxx for n = 5and p =0, 0.1 .and 0.2 are
plotted in Fig. 4. The volumetric plastic strain € is about 40 Perf:en?s of the maximum shgar
strain &g for g = 0.2. In all the cases we have studied, the strain éxx is found to increase with
an increasing p and to peak at about 8 = 90°.

PERFECTLY PLASTIC SOLUTION

Plane-strain crack-tip stress solutions for the corresponding pressure-sensitive pgrfectly p}as-
tic materials can be found by solving the two equilibrium equations together with the yield
condition for three unknown stress components, Orr, 0gg and org. Introducing the angular
parameter ¢, defined as sin¢ = u/ll - (1/3);12]1/2, we write the yield condition, o4 = 00, a8
follows

1/2 1 02 4)1/2
[(Urr — 048 )2 + Ugo] + sin¢arr + 0g¢ - (1 + 3 Sin ¢) o (6)

2 2 V3

With the yield condition written in the above form, crack-tip stress solution§ are obtained in
a similar manner as in the Prandtl punch problem for soils and concretes using the Coulomb
yield criterion. A summary of the results is as follows (for details, see Li and Pan 1988).

The crack-tip fields consist of two constant stress sectors and a centered fan sector. The
O-variations of the stress components and the angular spans of these sectors depend on the
pressure sensitivity factor pu only through the parameter ¢. The perfectl)( plastic solution f?r
= 0 is exactly the same as that of Rice (1968). The low-hardening solutions of the crack-tip
stress fields are found to agree with the corresponding perfectly plastic solutions.

It should be noted that the perfect plasticity solution is valid for ¢ < = /2, which is equivalent
to the requirement, u < V3 /2. As mentioned in the previous section, there exists a limit value
fim corresponding to each n so that no solution of the form (5) is found so far v_vhen B> Plim-
The values of pjim for n = 5, 10, 20 and 100 are 0.2, 0.32, 0.45 and 0.6, respectively. It seems
that as n increases, the value of pjim increases and approaches to the number \/5/2 = 0.866
which is the pjim for the perfectly plastic solutions.

2875



AR
o

2.0 “ ;
C i Err
3 £ /
& L e §
a 6.6 .7 — S SO
----- €k S
1.0 F G S | T kk -
€gg tmmm----T
-0.5 : . .
0.0 0.0 45.0 90.0 135.0 180.0
0.0 45.0 90.0 135.0 180.0 Angle 6
Angle §
3.0
(v)
n=5
2.0 | §=0.10
£
s g
I £ @
7]
1.0 |
-
_/
T o i 0.5 - ‘ :
0.0 L= 1 L ML : 0.0 45.0 90.0 135.0 180.0
0.0 45.0 90.0 135.0 180.0 Angle 8
Angle 6
1.0
3.0
(c)
n=5
3 0.5
2.0 F £#=0.20 .
n £ 3
£ @
@ 0.0
1.0 i
S
i
S —~—. i
— Gro i -0.5 L . .
0.0 Ll L 1 LT i 0.0 45.0 90.0 135.0 180.0
0.0 45.0 90.0 135.0 180.0 Angle 6

Angle 6

ig. 4. lar distributi of the normalized strains for n = 5,
Fig. 3. Angular distributions of the normalized stresses for n = 5, Fig: 4 Angu_a.r - 1=ons = 0.20.
(a) = 0.0, (b) u = 0.10, (c)p = 0.
(a) p = 0.0, (b) p = 0.10, (c) x = 0.20.

2871
2876




B T

CONCLUDING REMARKS

It is clear from our hardening solution (5) that J can be regarded as a measure of the intensity
of the singular crack-tip fields. If the finite deformation zone and the fracture process zone
are well contained within the zone of dominance of the singular field, J can be used as a
characterizing parameter to correlate the initiation of crack growth in the pressure-sensitive
dilatant materials. Furthermore, under small-scale yielding conditions J can be related to
the elastic intensity factor K, and be inferred from the geometry and remote loading. In
other words, with the existence of the solution (5) it is possible to use the so-called one-
characterizing-parameter approach to predict damage in polymers and ceramics within the
context of nonlinear fracture mechanics.
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