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ABSTRACT

Using previously reported data on the variation with notch root radius of
the toughness of AISI 4140 steel tested in different microstructural con—
ditioms, it is seen that the observed sharp crack toughness values can be
rationalized in terms of the characteristic distance for the operating frac—
ture mode. Critical fracture stress values, estimated from stress controlled
fracture model and seen to be consistent with microstructural aspects per—
tinent to failure initiation, indicate that the argument proposed by Datta
(1981) in that plane strain toughness improvement is to be attributed to an
increase in the local (microscopic) stress level required for fracture ini-
tiation ahead of a sharp crak is not invariably valid. Finally, the concept
of characteristic distance is used to explain why in some cases, as observed
experimentally for AISI 4140 steel, a change from ductile to brittle frac-
ture initiation mode can indeed be accompanied by an improvement in sharp
crack toughness.
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INTRODUCTION

Models introduced for the prediction of the fracture toughness, Kic, of a
given material under different service conditions are generally dependent
for their application on knowledge of the characteristic distance for the
operating fracture mode. This concept is based on that a critical stress Og
for stress controlled fracture, or a critical strain €¢ for strain control-
led fracture, has to be exceeded over some distance ahead of the tip of a
sharp crack before the conditions for fracture are fulfilled.

In the presence of a rounded notch, the fracture toughness (termed apparent
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tance were raised by Datta (1981). He argues that the improvement in sharp
crack toughness associated with high temperature austenitization of AISI
4340 steel tested in the as—quenched condition could not be attributed to
an increase in the characteristic distance. Rather, the improvement in Ky
can be explained by the presence of substantial amounts of autotempered €
carbide particles, thereby causing dispersion strengthening and hence
raising the microscopic stress level required to create a microcrack (that
is, to initiate fracture) ahead of the sharp crack tip. Both the improvement
in toughness and the presence of fine € carbide precipitates, brought about
by high temperature austenitizing, were considered consistent with the pre-
dominance of a ductile failure initiation mode in as—quenched test speci-—
mens. For conventional austenitizing (870°C), on the other hand, a quasi-
cleavage-intergranular cracking initiation mode was found to prevail in
precracked specimens tested in the as—quenched condition. This finding was
attributed by Datta (1981) to the lack of € carbide particles in signifi-
cant amounts, which, in turn, implies in a lower microscopic stress level
for fracture initiation and hence in a lower Ky, compared with the case of
high temperature austenitization. Based on the foregoing arguments Datta
(1981) concludes that in sharp crack testing the grain size does not affect
the toughness level, whereas in the presence of a blunt notch, the grain
size does play an important role in defining apparent toughness values.
Here the smaller grain size obtained in the conventional austenitizing
treatment invariably results in a superior toughness (Kp) in virtue of the
large number of grain boundaries a microcrack formed ahead of the notch,
away from its tip, has to cross to join the notch root.

The purpose of this paper is to discuss the validity of the characteristic
distance concept, using previously reported experimental data (Graga,
Darwish and Pereira, 1984) on the variation of the apparent toughness with
notch root radius in commercial AISI 4140 alloy steel austenitized at 870
and 1200°C and tested at ambient temperature in the as—quenched and quenched
and tempered at 200 and 350°C conditions. Both sharp crack and rounded notch
toughness values are presented and discussed in light of Datta's arguments.

EXPERIMENTAL DATA

Fractographic studies have indicated that fracture occurs primarily by in-
tergranular cracking, in AISI 4140 steel specimens tested in the 870+350 and
1200+350 conditions (referring to 870 and 1200 austenitization followed by
quenching and 350°C tempering). Specimens austenitized at 1200°C and tested
in the as-quenched condition (1200+Q) have been found to fail by a mixture
of intergranular cracking and quasicleavage. Based on these fractographic
observations, it is concluded that fracture initiation in these three micro-
structural conditions can be considered to be stress controlled. On the
other hand, fracture is considered to be essentially strain controlled, in
conventionally austenitized specimens tested in the as—quenched (870+Q) and
quenched and low temperature tempered (870+200) conditions, since failure
in these two cases is shown to initiate predominantely by ductile rupture.
Finally, high temperature austenitized-low temperature tempered specimens
(1200+200) are seen to display a mixture of ductile rupture, quasicleavage
and intergranular cracking. Fracture surfaces as observed by scanning elec—
tron microscopy are shown in Fig. 1, for the different microstructural con-

ditions considered in this work.

Once the microscopic fracture mechanism is known, the linear relationship
between Kj and p determined for a given microstructural condition, can
be used to obtain of or ef depending on the predominant initiation mode,
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and from knowledge of Ky, one can estimate pgff. The values of Of, €f and
peff reported by Graga, Darwish and Pereira (1984) are presented in Table
1, together with K. and K, (for p = 0.25 mm) toughness levels.

Table 1. K

0., €. and p for the different heat

Ic’ KA’ £2 “f eff

treatments

Heat treatment K (1Pavm) K, (MPav'm) of (MPa) €¢ (¢3) Poff (um)

870Q 571 1134 = 15.8 51

870200 70£2 129+1 = 27.7 43

870350 52%1 10243 3,677 - 39

1200-Q 714 8512 2,565 - 188

1200~200 744 12443 = = 91

1200350 56+2 6813 2,183 = 196
DISCUSSION

The effect of heat treatment on the sharp crack toughness of the steel con-—
sidered in this study is summarized in Fig. 2, where it is observed that an
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Fig. 1.

SEM of fracture surfaces for, (a) 870+350, (b)

1200+350, (c) 1200+Q, (d) 870
2 > +Q, (e) 870-200,
and (f) 12002200 conditions. Fig. 2. Variation of Ky, and K, (measured for p = 0.25 mm)
of AISI 4140 steel with heat treatment conditions.
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specimens was found to proceed essentially by ductile failure. The change
from ductile to brittle initiation mode, brought about by increasing the
austenitizing temperature from 870 to 1200°C, is seen to be accompanied by
an improvement of about 257 in sharp crack toughness. That is, the predomi-
nance of a ductile failure mechanism does not necessarily imply in higher
Kic level and hence cannot be used as an argument in itself to explain
improvement in sharp crack toughness. It is thus concluded that despite the
embrittling effect associated with high temperature austenitizing, the
accompanying coarsening of the microstructure, leading to a considerably
larger characteristic distance (peff = 188 um) for the operating fracture
mode, seems to be responsible for the significant improvement in toughness
level over that observed for ductile failure in 870+Q specimens. Only in

the 1200350 heat treatment condition did the steel's sharp crack toughness,
sufficiently degraded by TME, become as low as that determined for the 870-Q

specimens (Table 1).

Effect of Low Temperature (200°C) Tempering

Low temperature tempering of quenched specimens results in the formation of
fine carbide precipitates (essentially € carbide), which according to
Datta's arguments (Datta, 1981) should be accompanied by an increase in both
sharp crack and rounded notch toughness levels. However, for high tempera-
ture austenitizing, it is seen from Fig. 2 that while K, did in fact improve
considerably as a result of low temperature tempering, Kic, on the other
hand, remained essentially unaltered. Now if ome considers the data reported
in Table 1, it may be concluded that since fracture initiation in 1200-200
specimens proceeds by a mixture of ductile rupture, quasicleavage and
intergranular cracking, the corresponding peff value probably reflects an
average between the limiting root radii for a stress controlled and strain
controlled failure mechanisms (Graga, Darwish and Pereira, 1984). Thus the
reduction in p.¢f resulting from low temperature tempering can be considered
responsible for maintaining Ky. essentially at the same level encountered
for as—quenched specimens despite € carbide precipitation during tempering.

For specimens tested in the 870»200 condition, both Kp. and Kp levels were
found to be higher than those obtained for as-quenched specimens (870+Q) as
a result of the increase in €f that accompanies the transfer of carbon from
the dislocations, during low temperature tempering, to form fine carbide
precipitates. This microstructural change is seen to be accompanied by a
decrease in pg¢g for ductile failure (Table 1). However this reduction in
characteristic distance is more than compensated by the significant increase
in €f and Ky is found to exhibit higher level for 870+200 specimens com-—
pared to that observed for as-quenched specimens (870Q) .

CONCLUSIONS

The characteristic distance concept seems to be appropriate for rationaliz-
ing plane strain fracture toughness values determined for AISI 4140 steel in

different microstructural conditions.

Higher sharp crack toughness is not necessarily associated with higher local
stress level at the moment of fracture initiation ahead of the sharp crack

tip.

A change in initiation mode from ductile failure to brittle fracture does
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not necessarily lead to an improvement in sharp crack toughness. Thus in
defining Ki. level, one should take into account the characteristic distance
for the operating fracture mode.
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