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OVERVIEW

The need for understanding and improving the toughness of advanced composite materi-
als systems has recently rekindled an interest in the analysis of crack tip fields near and
on the interfaces separating distinct material phases. In particular, the case of a crack
lying along part of such an interface has received much attention.

When each material is isotropic linear elastic, alternative models of near—tip fields can
be constructed, depending on whether the crack faces are assumed to be separated and
traction free (TF) or contacting and capable of transmitting traction. Solutions of the
former type, due to Williams (1959), in general display weakly oscillatory square root
singular behavior in the mathematical limit r — 0, a feature locally associated with
oscillatory interpenetration of crack face displacement. For predominant tensile loading,
6, the maximum distance from the crack tip over which interpenetration is predicted, may
be several orders of magnitude less than L, a characteristic length scale of the geometry
(e.g., crack length). In such cases, simply neglecting the incompatibility of crack face
interpenetration can be justified in the sense of “small scale nonlinearity”. In cases of
combined loading producing appreciable shear traction along the interface plane, the
normalized contact length §/L can become large, even in the presence of applied tension,
Comninou and Schmeuser (1979). In such cases, the asymptotic TF solutions become
increasingly irrelevant, and crack face contact must be explicitly accounted for, as, e.g.,
in the closed frictionless (CF) fields of Comninou (1977).

The singular stresses of these elastic solutions cannot be sustained if either material can
accommodate limited plastic flow. Recently several models of bi-material crack tip in-
elastic deformation have appeared. Shih and Asaro (herein denoted ‘SA’) (1988a,b,c)
and Zywicz and Parks (denoted ‘ZP’) (1988a,b,c) have permitted inelastic deformation
in one or both of the adjacent media. SA focussed on power law strain hardening non-
linearity under conditions of open, TF crack faces. ZP considered ideally plastic small
scale yielding (SSY) well within the dominant elastic fields of both the TF (1988a, 1988c¢)
and CF (1988b) idealizations. Approaches based on these distinct plastic constitutive
models are complementary. The simplification of ideal plasticity readily provides for the
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Figure 1: Schematic interfacial crack tip region.

compact and intuitive representation of asymptotic fields in terms of centered fan and
constant state slipline regions and elastic wedges. The power law hardening idealization
(strain o stress™) leads to asymptotic stress fields which can be well-modeled by the
HRR-type form o o op - (J/oor)l/("“) (SA, 1988a—). The mixity, or phase, of plastic
zones embedded within the TF field can be characterized by parameters independently
introduced by SA (1988a) and ZP (1988a). These parameters can also be used to define
conditions under which SSY within a dominant TF field takes place — that is, when no
significant crack face contact occurs (ZP, 1988a; SA, 1988c).

Here we highlight certain major features emerging from our studies of SSY at bi-material
crack tips. The current format precludes detailed discussion, so the interested reader is
referred elsewhere for further information.

APPROXIMATE PLASTIC ZONES

Insight regarding SSY plastic zones can be gleaned from the elastic fields in which they
are embedded. An approximate method for determining the crack tip plastic zone shape
and size consists of equating the elastically-calculated Mises or Tresca equivalent stress
with the yield strength of the material. The locus of points satisfying this condition is
taken as the (approximate) plastic zone boundary.

ZP (1988a) applied this procedure to the bi-material crack tip region shown in Figure 1.
In the respective domains, shear moduli are u; (j = 1,2) and Poisson ratios are v;.
Remote loading produces an elastic stress field which is locally dominated by the complex
bi—material stress intensity factor K and associated asymptotic interfacial crack-tip stress
fields. Hutchinson, et al., (1987) define K such that, as r — O on the interface § = 0,
Oyy + 10y — Kr*/y/2rr. The bi-material constant, ¢, which modulates the oscillation
period, can be defined as e = 2~ In [(ﬁ + t) / (ﬁ + “ll)], where k; = 3 — 4v; for plane
strain.

Stress within a planar isotropic elastic solid can be represented by Muskhelishvili poten-
tials: 0z, +0yy =2 [¢' —+ 43'] ,and 0y, — 0, +120,, = 2[(2— 2)¢" — ¢' + '], where ¢' and
Q' are analytic functions of the complex variable z = z+1y, prime denotes derivative, and
the overbar denotes complex conjugate. As z — O in region “1” of Fig. 1, the dominant
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portions of these functions are (Rice, 1988)
Ke 27 1_; 1
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% 2v/2m cosh e ' 2y/2mcoshme

Using the plane strain result o,, = v(0., + 0y,), the Mises equivalent stress, &, can
be calculated in region 1. The locus of points where this measure equals o,,, the yield
strength of material ‘1’, can be expressed in polar repesentation as

2 cos(8 + 2¢(0)) [(’32 - 1) e2(®=") — (2¢sin 6 + cos 8)]

Keh's

3KK
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where D = v? —v; + 1 and ¢(8) = /(K + €lnr,(0). Here /K = arctan(SK/RK) is
the phase angle of K, defined such that # > |/K|. In the limiting case of ¢ = O,
(1) provides approximate homogeneous mixed mode plastic zones which are in good
qualitative agreement with detailed SSY solutions (Shih, 1974; Dong and Pan, 1988).

Since ¢(#) appears on the right side of (1), this equation is in general an implicit expression
for r,(8). ZP noted, however, that the coefficient of cos (¢ + 2¢(8)) vanishes identically
at a particular angle, 6o = f(¢, D), thus removing the implicit character of the equation
(on the ray 8 = 6;). Along this ray, plastic zone growth is proportional to KK/U;‘;, but
independent of /K.

A characteristic size of the plastic zone expression (1) is r,0 = KI-(/m::, cosh’?mwe. ZP
(1988a) introduced the dimensionless interfacial load phase parameter ¢o = /K +¢€ln(ry0)
as characterizing the local mixity by summing the load phase shift, attributable to
the change in rpo with increased loading, with that due to the applied loading, /K.
SA (1988a) independently defined a related load phase parameter, £, for elastic-plastic
analysis of interface cracks. Under SSY conditions, these parameters are related by
o=€¢—1In Sw cosh? (7re)). In view of the weak dependence of their difference on € over
the practical range of interface elastic constants, ¢ and £ are effectively identical param-
eterizations of mixity for locally ductile interface cracks.

Figure 2 shows finite element (FE) calculations of plastic zones for a deformation theory
Ramberg-Osgood strain hardening material, with strain hardening exponent n = 10
adjoint to a rigid material (SA, 1988a), and the approximate plastic zones of (1) for
several load levels. The calculations were performed for an interfacial Griffith type crack
of length L = 2a with the upper domain having v, = 0.3, leading to ¢ = .0935 and
0, = 98.2°. Here 0 represents the remote stress normal to the crack face, and oy is the
reference (or yield) stress. The FE plastic zone is defined as the locus of & = 0p. The
overall sizes and shapes are well characterized by the approximation (1). Although the
FE plastic zone radii are not identically equal at f,, the extent of the plastic zone in
the vicinity of 8, is indeed approximately the same for all loadings (¢,). Expression (1)
is also in modestly good agreement with FE calculations of nonhardening bi-material
plastic zones (Zywicz, 1988; ZP, 1988a—c), but the agreement is not as good as shown
in Fig. 2 since ideal plasticity formally corresponds to a strain hardening exponent of
n — oo, while the approximation (1) becomes precise as n — 1.

CRACK FACE CONTACT

The asymptotic (relative) crack-face displacement obtained from the TF solution is
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Figure 2: Griffith crack bi-material plastic zone comparisons between (1) and finite
element solutions (SA, 1988a) of power law hardening material with n = 10. (ZP, 1988a).

(Hutchinson, et al., 1987)

_ _ _ _ (C1 + Ca)Kr'e\/r
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where u(r) = uy(r) + iu.(r), and C; = (1+ «;)/p; are elastic compliances. Inadmissible
interpenetration is predicted at radii r having Auy(r) < 0 (Rice, 1988), or, equivalently,
having cos ¢.s(r) + 2esin¢,s(r) < 0 (ZP, 1988a), where ¢.;(r) = /K + eIlnr. Conversely,
cracks are “elastically open” at radii having the respective inequalities reversed. The
K-field dominates the complete elasticity solution up to a distance rma, = L/10 from
the tip. In order for the plastic zone not to unduly perturb the K-field, its extent, r,o,
should not exceed ~ 1/3 x L/10, nor should (elastic) contact occur between rpo and
Tmax. ZP (1988a) combined these requirements to express (in terms of ¢0) approximate
K conditions providing SSY within the TF interface fields. SA (1988¢) provided similar
limits in terms of their parameter .

ZP (1988b) considered the opposite extreme of SSY within the dominant elastic field of
a closed frictionless interface crack and provided an approximate map of remote normal
and shear loadings of a Griffith interface crack leading to SSY in both the TF and CF
cases. The CF elastic interface stress fields, which depend mildly on ¢, are r—!/2 singular
and closely resemble those of homogeneous mode II loading. A small window of loading
parameters leads to SSY within a contact zone of length 6, which is itself small compared
to L/10. In this case, K§;, the strength of the CF singularity, is Kj; = +y/KK/7, the
sign chosen depending on the sign of € so as to assure compressive stress on the crack
faces.

The CF SSY field is self-similar, with characteristic size T, = 3Ki,2/20:,. For ideal

plastic flow (with oy, = 0y = V/3k, where k is shear flow strength) adjacent to a rigid
substrate, ZP (1988b) give the asymptoticslipline field shown in Figure 3, with character-
istic angles al = 29°, y1 = 90°, @2 = 16°, and 42 = 45°. Asymptotic crack face pressure
is 0.18300, while on the interface, the shear traction has magnitude k¥ and normal (ten-
sile) stress is 0.1310p. The (nonzero) crack tip displacement is pure sliding parallel to the
interface, with magnitude §; = 1.911J/a,, where J = G = n(C; + C;) K§;?/16 cosh? rre.
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Figure 3: Asymptotic slipline field for SSY within a closed frictionless elastic interface
field (ZP, 1988b).

SMALL SCALE YIELDING: TRACTION FREE CRACK FACES

Zywicz (1988) performed an extensive array of plane strain finite element analyses of
ideally plastic SSY within TF K-fields. Various combinations of elastic constants (e, 1)
and applied load phases (¢) were considered. Among the critical numerical details were
use of the 9-node selective/reduced integration finite element (advocated by SA, 1988a),
since all other element formulations examined generated highly irregular hydrostatic
stress fields, thus making identification of characteristic near tip fields impossible, and
generalization of Sham’s (1983) boundary layer formulation to interface cracks.

Figure 4 shows the radial variation of the normalized stress components on the ray
6 = 3.1° for a material with v = .342 atop a rigid substrate (e = 0.07796). Proportional
increase of K having /K = 0 from zero to a value giving ¢, = 30° has taken place. The
normalized radius R = r/r,,. Very deep within the plastic zone, a centered fan state is
obtained, as evidenced by the equality of o,, and o4 while 0,5 = k.

Based on extensive study of the radial and circumferential variation of stress within the
plastic zones, the schematic crack tip field shown in Figure 5 was constructed to describe
conditions at B << 1. The elastic wedge zones, of extents £ and £1, appear in black.
Ahead of the tip a quasi—constant state region with very small (if any) curvature may
occur at finite R. Angles £ and ~ are independent of R for R << 1, but a, n, and €1 do
vary with R, suggesting the presence of a cusp. In the limit as R — 0, a — 0 and £1 — 0,
suggesting that the asymptotic fields should be constructed with o = £1 = 0. Because
fields are still changing rather significantly at extremely small R values, we emphasize
the fields at a small, but finite radius, arbitrarily chosen as R = v = k/p, rather than
the asymptotic limit as R — 0, because there the current idealization of linear kinematics
breaks down.

Figure 6 shows how the assemblage of various regions matches the finite element stress
fields at R = o under the conditions of Figure 4. Agreement is good except near the
transition between the elastic wedge and the back constant state. As noted by Zywicz
(1988), this is likely due to residual out of plane plastic strain accumulated in the “elastic”
wedge at smaller loads (and smaller ¢;), since the angles of Fig. 5 all depend on ¢- This
evolution is schematically indicated in Figure 7. For slightly negative ¢o, only a fan of
135° and a constant state crack face of 45° obtain, resulting in interface normal traction
of 3.220¢ and shear traction of magnitude k. This state of stress has a hydrostatic
part much greater than the limiting Prandtl field of homogeneous fracture mechanics,
and it may be expected to be particularly deleterious to the toughness exhibited by the
interface.
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Figure 5: Schematic near tip SSY fields for traction free interface crack faces.
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Figure 6: Matching of finite element stresses with a local field of the type shown in Fig. 5
at R = Yo-
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Figure 7: Schematic dependence of near tip fields on ¢.
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