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ABSTRACT
Problems of cracks on interfaces are reviewed. Topics discussed are
contact zone models, models of interfaces including continuous variations
in elastic moduli, and numerical results of elastic-plastic analysis.
KEYWORDS
Contact zones, jnterface models, bimaterial strip, elastic-plastic
analysis.
OVERVIEW

Consider the situation shown in Figure 1 where the figure either represents
a plane sheet or a plane cross-section for plane strain deformation. The
unbroken welded interface (infinitesimally thin) is modelled by the
continuity of tractions and displacements of the two media across it,
whereas the cracked region is loaded by point loads as shown. It has been
known since the work of (England 1965) and (Malyshev and Salganik 1965)
that for such a problem, where media 1 and 2 are dissimilar and 1linear
elastic, the analysis predicts the peculiar phenomenon of interpenetration
of the crack faces. (England actually considered a finite length crack
Joaded internally and worked out details for a uniform pressure loading) .
This is, of course, unsatisfactory from the physical point of view but is
usually defended on the grounds that only a very small region near the
crack tip is affected

The solution of the problem shown in Figure 1 (where the crack is
semi-infinite) can be written near the crack tip r =0, as
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Fig.1 Semi-infinite crack (no contact zone) oscillatory
singularity at r = 0.
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Equation (1) represents the jump in these displacement gradients across ]
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where M, p, are the shear moduli of medium 1 and 2 respectively and k =
3-4v (plane strain) (= %}% plane stress).

Expressions (1) show that near the crack tip the jump in normal
displacement may change sign infinitely often, leading to interpenetration

of the crack faces. However, evaluating the energy release rate (G) by a
local work argument at the crack tip gives the result
(A +B))
1 1 2 .2
G= —gmp— (Q7+P7) (3)

Thus even though the stress and displacement fields have the oscillatory
behaviour at the crack tip the energy release rate is well behaved. Note
further that setting Q equal to zero in equations (1) still prdduces mode 1
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and 2 stress so that the failure modes are interlinked. We have presented
results for a specific example as an illustration but the above features
are generic.

MEDIUM (i)

Fig.2 Comninou’s contact zone model. Smooth crack
closure at r = a, 6 = #u.

A large number of boundary value problems all with the oscillatory stress,
interpenetration characteristic have been solved (e.g.(Williams 1859),
(Erdogan 1963,1965), (Sih 1965), (Rice & Sih 1965), (Willis 1972) and many
others). It is worth noting that although these solutions have this
invalid feature and cannot thus hold at the crack tip itself the solutions
may still be useful as outer solutions, in the sense of matched asymptotic
expansions, valid away from the crack tip. This feature is noted in
(Atkinson 1977) and used in (Atkinson 1982b) to obtain an analytic solution
to the (Comninou 1977) model of the interface crack with a contact zone.
Comninou attempted to satisfy the condition that the crack faces should not
interpenetrate by postulating a region behind the crack tip on which the
faces would be in contact but could slide. The length of this contact
region is to be determined by the conditions that the open part of the
crack closes smoothly and that the stress on the closed part is

compressive, the resulting picture looks something like Figure 2. The
ratio of length of contact zone to crack length is very small when the
contact zone is due to the "interpenetratifgﬂ effect (e.g. for the

situation of Figure 1 with Q = 0, a/t < 10 7). The smallness of the
contact zone has lead some recent authors to pay little attention to this
model while being careful to admit the possibility of contact. This is
unfortunate since the model does take care of the interpenetration anomaly
and for some loadings (e.g. the finite length crack in an applied shear
stress field) the asymmetry of the problem causes a much longer contact
region at one end of the crack. As shown in Figure 2 the crack tip which
is at the origin now behaves like a shear crack with an energy release rate
given by equation (3). This is shown in (Atkinson 1982) where other
"possible" models are discussed. (Comninou and co-workers 1977, 1978, 1979)
have applied her model to a variety of situations including mixed mode

loading and three dimensional problems. In (Atkinson 1982b) we show how
matched asymptotic expansions can be used to derive the contact zone
solution for a given problem using the semi-infinite "inner problem" of

(Atkinson 1982a) together with the appropriate "incorrect interpenetration”
solution. Thus the large number of boundary value problem solutions
mentioned above can be turned into contact zone solutions without too much
effort. More recently (Gautesen & Dundurs 1987) have given a solution to
the interface crack in a tension field in the form of a convergent series
of elliptic functions. They emphasise the necessity of determining, for
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any crack problem, whether or not the crack faces make contact or not

Questions of uniqueness and existence are also important, of course,
although often taken for granted. Thus the model of Comninou is unique
provided the two inequalities, crick open or closed and stress compressive
on the closed region, are imposed (Shield 1982). The standard solution
with interpenetration is also unique with an integrability condition on
the energy density so uniqueness does not necessarily mean there will not
be objections to a solution. The alternative models discussed in (Atkinson
1982a) fall into this category, a referee <claimed they were as
objectionable as the original ‘interpenetration’ one. However, such models
can be constructed which remove interpenetration and redistribute the
available energy release rate into either pure mode 1 crack tip
deformation or a mixture of modes, see the cited paper for details.
Although the contact zone model may be the most desirable model from a
physical point of view it would be nice to have experimental support. Note
that the contact model, implies that the available energy release goes into
a local mode 2 crack tip for remote tensile loading even if the bimaterial
is only slightly dissimilar.

The discussion above has centred on interface cracks where the interface is
modelled as infinitesimally thin, it might be appropriate however to
explore other models of the interface region. Some simple situations have
been discussed in (Atkinson 1977). These include models where the crack
lies inside an interface region which may have constant or spatially
varying moduli or the interface region itself is diffuse having moduli
which vary continuously from one medium to the other. These two
situations are shown in Figure 3 for the situation of a displacement loaded
strip. The situation shown in Figure 3a could be a description of two
unlike media 1 and 2 intentionally glued together with a layer of adhesive
3. The situation of Figure 3b could be a description of a simple or glued
interface between two materials which had suffered a gradual transition of
the physical properties (interdiffusion of metals, reaction of the adhesive
with the adherends, etc.). Either situation (3a or 3b) might also hold on
a microscopic scale at an interface which was nominally a simple unglued
Jjunction between two materials. Note that a very similar justification of
precisely these models has been given recently by Delale & Erdogan (1988).

In order to illustrate these models consider the situation where the crack
lies in a bimaterial strip of thickness 2b. Figures 3a and 3b, the crack
is assumed to be semi-infinite, the components of the bimaterial and the
interface are isotropic elastic and plane strain conditions are assumed to
exist so that the displacements do not varying in the X, direction. To

simplify the problem still further at this stage we assume two special
kinds of loading.

Fixed displacements on the strip side, with boundary conditions

u =0 on x_=1%b ;

on x_ = +b, u,=u, on x,=-b for all x, (4)

(ul,uz) are the displacement components in the (X1'xz) co—qrdinate system,

plane strain conditions are assured and U and u, are constants. For
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and, for model (ii)
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The results are:

(i) (Figure 3a)
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(5)

(8)

(7)

this situation one can determine the energy flow into the crack tip for
either model of the interface using results given in (Atkinson 1975, 1977).
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Comparing the results (7) with either (5) or (6) we see that for h, « b the
result (7) agrees with (5) or (6) with an error term O(hl/b). So for a

very thin interface in this example at least, the ‘ideal interface’ will
give a suitable first approximation for the energy release even though the
stress and displacement at the crack tip will be quite different from those
of either of the models we suggest. In particular, of course, the ideal
interface model would still show the interpenetration effect whereas the
other models would not.

Time harmonic applied displacements and transient loading problems

For time harmonic applied displacements we might have boundary conditions
like

iwt
x_ = tb; =u = +
i 2 : u2 zoe on x2 b for all x1
iwt
and u_=u_e x_ = -b E
2 21 on N for all X
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o
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A comparison with results given in (Atkinson 1977) for a crack in a
bimaterial sandwich suggests that the expression for the energy release
rate would now involve terms like ccs(wh/cL) and sin(wh/cL) where h is the

thickness of the interface layer and <. is the longitudinal wave speed in

it for interface model (Figure 3a). Similar but more complicated results
would follow for model (Figure 3b). The important, though perhaps obvious,
point is that a limit h > O to compare with the ideal interface solution is
no longer a uniform 1limit and depends on the frequency w, the ideal
interface solution being a better approximation for the energy release rate
if the frequency w is small. Similar general considerations should apply
in the case of transient loading.

Simple minded models such as shown in Figure 3a, where medium 3 culd be
homogeneous with behaviour all its own, could be useful in the necessarily
complicated analysis of elastic-plastic bimaterials where it is not known
what the form of the crack tip solution is at the ideal bimaterial
interface, we return to this point later.

In a recent paper (Rice 1988) has returned to the ‘classical’ interface
crack solution (the one that interpenetrates) and has argued that the
complex stress intensity factor K associated with it can be used as a crack
tip characterising parameter. We have already noted above that it can be
used as an outer solution (i.e. valid sufficiently far from the real crack
tip) to deduce the contact zone solution. Referring back to our equations
(1) and (2) his notation following (Hutchinson et al. 1987) is to write
e =1 (B/A) (8)

and to define a complex stress intensity factor K so that the stress along
the interface ahead of the crack tip is

(c_+ic_)__ = Kr'S/vomr (9)
Yy xy 6=0
Thus for the situation shown in Figure 1 (equation 1)
’
K = (2nt) %(P+iQ) t**2coshme (10)
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and for an interface crack of length L subject to remotely uniform stresses
¢ and o~
YY xy
K = (6° +ic® ) (1+2ic)L VL2 (n
Yy xy

at the right-hand crack tip. For this latter case (the remotely loaded
crack) a phase angle Yy is defined so that
0

= Y
tany = — F
o
YY
thus ¢ = O denotes tension and Y = *n/2 shear in *x direction. The

conclusions are

(a) similar values of K (the complex stress intensity factor defined
above) for two cracked bodies then imply similar states at the crack tip,
so that conditions for crack growth can be phrased in terms of K reaching a
critical failure locus in a complex plane, and

(b) the maintenance of a similar state at a crack tip under change of
crack length is shown to require alteration of both the magnitude and phase
angle of a combined tension and shear loading.

Conclusion (b) is, of course, simply a consequence of expressions like (10)
or (11).

The problem of elastic-plastic analysis of cracks on bimaterial interfaces
has been considered by (Shih & Asaro 1988). They give many numerical
results for small scale yielding, the small strain approximation and a

medium described by J2 deformation theory for a Ramberg-Osgood

stress-strain behaviour i.e. in unjaxial tension the material deforms

according to e/eo = a/ao + a(a/oo) where L and €, are the reference

stress and strain, o is a material constant and N the strain hardening
exponent. Under small scale yielding they specit% remote elastic fields by
a complex stress concentration vector Q = |Q[e1 with ¢ being the phase
angle between the two ianJane stress modes (Q is related to the complex K
given above by Q = (L) K, € being defined as in (8) above, L being the
total crack length). They find that the elastic-plastic fields are mpembers
of a family parameterised by a new phase angle £ = ¢ + ¢ In(Qﬁ/aoL) and

the fields nearly scale with the well defined energy release rate evaluated
by the J integral. The authors note that although the near tip fields do
not appear to have a separable singular form (e.g. of the HRR type fields
as in homogeneous media) they do however, bear interesting similarities to
certain mixed mode HRR fields. Some concern is also given in their
numerical work to the possibility of contact between the crack faces.
However, the question of what is the precise form of the near crack tip

field for elastic-plastic bimaterials still remains. Some progress on this
has been made recently by (Champion & Atkinson 1988). Perhaps some 1light
will be cast on this question in this session?

The problem of a single slip band emanating from the tip of an interface
crack has been considered recently by (Bastero & Atkinson 1988). They
considered the special case of an incompressible matrix joined to a rigid
material and a flaw or debond at the boundary. On the application of load
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the crack tip singularity was relaxed by dislocation motion along a single
slip band intersecting the crack tip. For given mixed mode loading a
unique angle was found for which slip could just relax the crack. The
corresponding problem when the matrix is compressible is more complicated
due to the oscillatory nature of the (classical) elastic stress-singularity
and has just been completed.

The above mentioned papers were all concerned with small deformation,
however, (Knowles & Sternberg 1983) made an asymptotic investigation,
within the nonlinear theory of plane stress, of a traction free interface
crack between two dissimilar semi-infinite neo-Hookean sheets. The results
they obtained were free of the oscillatory singularities of the kind
predicted by the 1inear theory. They made the following statement.

*The precise approximative status of solutions

to (linearised) problems involving

interface-cracks remains an intriguing issue’.
The brackets in this statement have been inserted by us, if it is read
ignoring the adjective in brackets it probably still applies to the current
position.
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