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ABSTRACT

The effects of fiber spacing and fiber volume fraction on void nucleation in short-fiber composites
are investigated through calculations based on a continuum model for interface decohesion.
Using material parameters that simulate Al-SiC short-fiber composites, it is found that the
stress and strain levels at which debonding occurs is strongly dependent on fiber spacing and
volume fraction. In addition, fiber spacing also affects the mode of debonding at fiber ends.
The results provide insight into the effects of controllable microstructural parameters on damage
mechanisms that ultimately cause composite failure.
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INTRODUCTION

Aluminum alloys reinforced with short fibers of SiC exhibit substantial increases in yield
strength, ultimate tensile strength, and elastic modulus, as well as improved resistance to
creep and fatigue (Divecha et al., 1981, Nieh, 1984 and Nair et al., 1985). The observed prop-
erty levels indicate a potential for weight reduction and improved performance characteristics in
structural applications in the automotive and aerospace industries (McDaniels, 1985). However,
Al-SiC composites also exhibit severely reduced ductility and low fracture toughness (Nair et
al., 1985). This behavior constitutes a major limitation for Al-SiC composites and prevents
their employment in most of the intended applications.

One of the possible reasons for the premature failure of Al-SiC composites at low tensile strains
involves void formation by interface debonding at fiber ends. In a previous study, voids at fiber
ends in tensile fracture specimens have been observed and it was proposed that one cause of the
low fracture toughness and ductility derived from the concentration of stress at fiber corners
(Nutt and Duva, 1986). In the description of composite failure in (Nutt and Duva, 1986)
localized plastic strains developed at low macroscopic stress levels because of the sharp corner
profile at the fiber end, and cavitation ensued. More recently (Nutt and Needleman, 1987) a
more complete analysis of the process of void nucleation at fiber ends has been carried out using
a framework that permits quantitative predictions of the dependence of nucleation on matrix
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material properties, interfacial cohesion characteristics and fiber volume fraction and geometry.
ixperimental observations by transmission electron microscopy of the deformed microstructure
beneath tensile fracture surfaces showed distinct patterns of void evolution. These observations
were compared with similar patterns of void formation predicted from model-based calculations
using appropriate values for material parameters. The calculations indicated how the qualitative
features of void nucleation, such as shape, size and location, depended on specific material
parameters, such as interface strength and fiber geometry. The similarities between observed
and predicted modes of void evolution were so pronounced that it was possible to quantify
interface properties in the composite by comparisons between experimental observations and
predictions based on model calculations.

The purpose of the present work is to examine the effects of parametric variations on the
evolution of voids at fiber ends in Al-SiC composites under tensile loading. In particular, we
examine the effects of variations in fiber volume fraction for a fixed fiber spacing and variations
in fiber spacing for a fixed volume fraction. These effects are of great practical interest because
of the local variations in fiber spacing and fiber volume fraction which inevitably occur in
as-fabricated composites.

METHOD OF ANALYSIS

The analyses are based on the continuum model for interfacial decohesion presented in (Needle-
man, 1987). Within this framework, constitutive relations are specified independently for the
matrix, the inclusions and the interface. The SiC inclusions are taken to be rigid and the Al
matrix is modelled as a homogeneous, isotropic hardening, elastic- viscoplastic solid. Neither
the residual stress distribution nor the nonhomogeneous matrix strength distribution that arise
from prior thermo- mechanical processing are accounted for. The interfacial tractions are de-
rived from a potential, which is taken to depend only on the displacement difference across the
interface. In two dimensions, the interfacial tractions (force per unit initial area) are specified
by (Needleman, 1987),

T, = ‘T”am{(%)[l-z(%)ﬂ%ﬂ+0(% -]} &
e ol 120+ ) N

for u, < § while T, = T, = 0 when U, > 6. For the axisymmetric configurations analyzed
here, n and t refer to directions normal and tangential to the interface in the r—z plane of a
polar coordinate system, and u, and u; are components of the displacement difference across
the interface. The orientation of n is chosen so that positive u, corresponds to increasing
interfacial separation. From (1) and (2), the work of separation is

¢sep = 90m416/16 (3)

The interface is characterized by three parameters; the strength omaz, the work of separation
@sep> and the shear parameter a, which gives the ratio of shear stiffness to normal stiffness at
Un = uy = 0. The values of 0,4, ¢sep and a are taken to be constant along the interface,
although in principle they can be functions of position to account for variations in cohesion.
The characteristic length 6 is defined from (3) as 6 = 16¢5¢p/90maz. The value of § does not
represent the physical interface thickness, rather § is a parameter characterizing the ductility
of the process of interfacial separation (larger values of § give rise to a more ductile mode of
debonding). Since § has dimensions of length, the predicted behavior depends on inclusion size
at fixed volume fraction.
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Figure 1 shows the normal traction, Ty, as a funct.ion of u, with u, E‘;). As 1catr:3 :: Z:Z:i:;
Fig. 1, the maximum interfacial stress, omaz, is achieved at u, = §/3 and comple A Tp ration
occurs when u, = 6. In more general circumstances, where ut.i 0, the curt\)/et;: T,, e
u, depends on the history of u,. However, regardless of.the history of ¢, bo . n_an.veli
vanish at u, = & and, since there is an interfacial potential, the work o.f sep;m: ion tl}?a%lthe
by (3). The interfacial constitutive relation used here posses the converue-nt eat utreH an the
traction vanishes at a finite separation so that there is a well defined decohesion point. .:1 " A
atomistic calculations of interfacial separation, (Rose et al., 1981), suggest an exponential form,
which can readily be incorporated into the formulation (Needleman, 1988).
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Fig. 1. Normal traction across the interface as a function of un with

us = 0.

The finite element analysis is based on a convected coordinate Lagrangian formulatlo.n.of the
field equations with the initial unstressed state taken as reference. All ﬁeld. ?uzlmlt)ltlles arde
considered to be functions of convected coordinates, z*, whxch'serve as particle label s(i :11111
time ¢. Attention is confined to quasi-static deformations and, with body forces neglected, the

principal of virtual work is written as
/ TISE;;dV + / 5pdS = T6u;dS (4)
\4 Sint Sext

Here, 7% are the contravariant components of Kirchhoff stress (r = Jo, with o the Caucl}y sltre-ss)
on the deformed convected coordinate net, V, Se;: and Sin: are the total vo}ume (m; usion
plus matrix), external surface and interfacial surface, respectively, of the body in the reference

configuration, and

T = (r‘j + r"jufk)uj (5)
Eij = %(ui,j + uji + uhug,;) (6)

where v is the surface normal in the reference configuration, u; are the components of 'thi
displacement vector on base vectors in the reference configuration and (),i denotes covarian

differentiation in the reference frame.
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The matrix material is characterized as an elastic-viscoplastic isotropically hardening solid. The
total rate of deformation, D, is written as the sum of an elastic part, D¢, and a plastic part
DP, with

o Asbw. W
D= E T—E(T:I)I (7)
3€
D = =7 (8)

\'_Npere 7 is the Jaumann rate of Kirchhoff stress, I is the identity tensor, ¥ : I is the trace of ,
€ is the effective plastic strain rate, E is Young’s modulus, » is Poisson’s ratio and

; 1 .3
v =r-0,1 u,,,_g(r.l) 7 =ETI:T, (9)
s ooy oalfm 2 N
€=6[a/g(O]'"™ , 9(€) = oo(é/e0 +1)" , € = 00/ E (10)
Here, ¢ = [&dt and the function g(%) represents the effective stress versus effective strain

response in a tensile test carried out at a strain-rate such that € = é. Also, oq is a reference
strength and NV and m are the strain hardening exponent and strain rate hardening exponent,
respectively.

The inelastic uniaxial tensile response of the Al matrix are specified by oo = 332MPa, E =
74GPa and N = 0.1. These values are chosen to be representative of the average tensile prop-
erti.es reported for the P/M 6061 Al-T6 matrix material (Nardone and Prewo, 1986). Poisson’s
ratio, v, is 0.3 and the strain rate hardening exponent, m, is taken as 0.004, which corresponds
to slightly less than a 1% increase in strength level per order of magnitude increase in strain
rate.

The specific boundary value problem analyzed is one simulating a three dimensional periodic
array of circular cylindrical inclusions subject to a tensile stress parallel to the fiber axes. Each
cell in the periodic array is approximated by a circular cylinder and is required to remain
a circular cylinder throughout the deformation history in order to represent the constraint
imposed by the surrounding material. Symmetry about the midplane of the cell is also enforced.
Using a cylindrical coordinate system with radial coordinate z!, circumferential angle z2 and
axial coordinate z3, the boundary conditions for the axisymmetric region analyzed numerically
are

w@=0,T'=0,7T*=0,0n 2°=0 (11)
W6 = Us = éaue(bo+ U3), T' =0, T2 =0, on 23 = b, (12)
111=(71,T3=0,T2=0,0n z! = Ry (13)

Here, (") = 0()/0t and €,y. is a prescribed constant while U; is determined from the condition
that the average macroscopic true stress acting on the cell side vanishes. The axial tensile strain
rate, €qye, is prescribed equal to the material reference strain rate, ég in (12), but with the very
IO\IV strain rate hardening exponent characterizing the Al matrix, rate effects play a negligible
role.

NUMERICAL RESULTS

In the calculations carried out here, the material properties and interface characteristics remain
fixed; only the fiber volume fraction and spacing are varied. The material properties are given
above, the interfacial strength, o.mqz, is specified as oymqe = 509 = 1660MPa and the remaining
interface properties are given by taking the characteristic length, 6, as 0.01 times the inclusion
diameter and the shear parameter o = 1 in (1) and (2). Furthermore, the ratio of fiber length
to fiber diameter is fixed at 4.

2214

Figure 2 shows curves of average axial stress, 0qye, Versus average axial strain, €gpe = In(1 +
Us/bo), for fiber volume fractions of 10%, 20% and 30%. In each case the cell aspect ratio
is taken to be 4. Denoting the fiber radius by ro, these three volume fractions have ratios of
fiber radius to cell radius of ro/Ro = 0.463, ro/Ro = 0.588 and ro/Ro = 0.667, respectively.
The abrupt stress drop is associated with the normal traction near the fiber corner passing
through the maximum and the onset of decohesion. The decohesion initiation strain decreases
with increasing fiber volume fraction. The stress drop increases with increasing fiber volume
fraction. It should be noted that this stress drop is a local one for the neighborhood of a single
debonding fiber. The overall situation modelled is for a regular array of fibers each of which is
deforming identically so that if the curves in Fig. 2 are regarded as overall response curves, they
correspond to all fibers debonding simultaneously. Furthermore, due to the symmetry imposed
in the calculations voids initiate simultaneously at the top and bottom of each fiber. Figure 3
shows deformed meshes at the last stage of deformation for each of the calculations in Fig. 2.
The region shown is the quadrant analyzed numerically and the rigid fiber is indicated by the

shaded region.
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Fig. 2. Curves of average axial true stress versus logarithmic axial
strain for (A) 10% fiber volume fraction (B) 20% fiber volume fraction
and (C) 30% fiber volume fraction. In each case, the cell aspect ratio
equals the fiber aspect ratio which is 4.

The effect of fiber spacing at a fixed fiber volume fraction of 20% is shown in Fig. 4. The three
spacings considered have ratios of fiber radius to cell radius of 7o/ Ro = 0.463, 7o/ Ro = 0.588
and ro/Ro = 0.667. Curve B, ro/Ro = 0.588, is repeated from Fig. 2. The fiber spacings for the
other two cases can be seen in Figs. 5 and 6. The elastic stiffness increases as the end-to-end
fiber spacing decreases. The two cases having well separated fiber ends have a very similar
overall behavior. When the end-to-end spacing is very close, debonding initiates along the
centerline, rather than at the fiber corner, and at a comparatively small overall strain. There
is an abrupt load drop and then the stress decreases gradually as the void grows. As can be
seen in Fig. 4, although the stress-strain response prior to debonding is sensitive to the fiber
spacing, the stress levels after some void growth are not very different.

Figure 5 shows contours of constant Mises equivalent plastic strain, €, in the deformed configu-
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Fig. 3 Deformed finite element meshes for the quadrant analyzed
numerically for (a) 20% fiber volume fraction, at €z, = 0.0427, (b)
20% fiber volume fraction, at €5, = 0.0334 and (c) 30% fiber volume

fraction, at €4 = 0.0308. The tension axis is vertical and the fiber is
shaded.
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Fig. 4. Curves of average axial true stress versus logarithmic axial strain
for 20% fiber volume fraction (A) ro/ Ry = 0.463 (B) ro/Ro = 0.588 and
(C) To/Ro = 0.667.

.ration for the two extreme fiber spacing cases in Fig. 4. The present results show a transition
in modc.e of debonding with decreasing end-to-end spacing. When fiber ends are well separated
debonding initiates at the corners. For sufficiently close fibers, and how close that is undoubt-’
edly depends on material properties and interface characteristics, debonding initiates along the
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Fig. 5. Contours of constant plastic strain, €, in the deformed config-
uration of the quadrant analyzed numerically for (a) ro/Ro = 0.463 at
€ave = 0.00893 and (b) r9/Ro = 0.667 at €gye = 0.0233. The tension
axis is vertical and the fiber is shaded.

centerline. At some transition distance nearly simultaneous debonding is possible. In fact, case
B was also analyzed in (Nutt and Needleman, 1987) but using a different finite element mesh.
Very good agreement is found through initial debonding. However, in (Nutt and Needleman,
1987) debonding at the center followed debonding at the corner whereas here we only find
debonding at the corner. This spacing is one for which the competition between corner and
center debonding is very close and mesh design can influence the calculated mode of debond-
ing. The shift in debonding mode arises from the high hydrostatic tension that develops at the
center of the fiber end when the end-to-end spacing is small. This is illustrated in Fig. 6, where
contours of constant mean normal stress are plotted for ro/Ro = 0.463 and o/ Ro = 0.667 prior
to debonding.

DISCUSSION

We have examined the effects of fiber volume fraction and fiber spacing on the formation of
voids at fiber ends in composites subjected to tensile loading. Our calculations show how the
size, shape, and location of voids depend on the microstructural parameters of fiber volume
fraction and fiber spacing. Furthermore, the results of the calculations provide quantitative
indications of the effects of these parameters on the levels of stress and strain at which debonding
occurs, as shown in Figures 2 and 4. Within the composite, local fiber spacings (and volume
fractions) vary substantially from fiber spacings averaged over the bulk composite because the
distribution of submicron constituents is difficult to control (Nardone and Prewo, 1986). Non-
uniform distribution of the reinforcing phase contributes to the localization of plastic strain and
the premature onset of failure processes at low macroscopic strains (Nardone and Prewo, 1986).
The extremely low levels of toughness and ductility reported for Al-SiC composites (Divecha et
al., 1981 and Nair et al., 1985) and the fact that voids in tensile fracture specimens are observed
only near the fracture surface (Nutt and Needleman, 1987) suggest that composite failure is
controlled by the onset of damage mechanisms such as void nucleation. Our results indicate
how void formation at fiber ends is affected hy fiber volume concentration and spacing.
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Fig. 6. Contours of mean normal stress, ., /0o, in the deformed config-
uration of the quadrant analyzed numerically for (a) ro/Ro = 0.463 at
€ave = 0.00152 and (b) ro/Ro = 0.667 at €5y = 0.00416. The tension
axis is vertical and the fiber is shaded.
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