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ABSTRACT

An element formulation is suggested to obtain variable order
singularities simultaneousgly at two corner nodes of a side of a
4-noded quadrilateral. The element isg useful for modelling a
kinked crack with small kink length. The performance of the
element is demonstrated by considering three different examples
of kinked crackse The path independency and the influence of
mesh refinement on the computation of J integral are also exam-

ined.
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INTRODUCTION

Under mixed mode loading a crack leads to an out-of-plane exten-—
sim and hence kinking. In stable crack propagation studies
under this type of loading, one has to deal with kinked crackse.
For a small kink length, an analysis of the problem is difficult
due to the existence of two singular points at a close distance.
At the crack tip, there is a square root singularity, whereas at
the knee the order of singularity depends on the kink angle
(Williams, 1952) » One obvious strategy is to use of welllkmown
quarter point elements (Barsoum, 19'76§yat the crack tip for the
simulation of square root singularity and the 3-noded variable
order triangular singularity elements (Tracey and Cook, 1977) at
the knee. The two elements must be separated by a number of
conventional elements. This will usually lead to a large number
of elements and nodes and hence more computational cost. One
alternative strategy is to use one single element to cover the
whole kink length. This provided motivation for the development
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of the two singular point (TSP) finite elements.

We had some success in developing such an element (Dutta et al., 4 3
1988). In this paper the clement formulation is presented brief- 3
ly. The element has been used here to analyse three different X 4

kinked crack problems. In the first example, a kinked crack

under tensile loading, the path independency and the effect of es R &
mesh refinement surrounding the TSP element on J computation are 2 2
examined. In the last two examples, a four point bend and a

three point bend specimen configurations, the strain energy re- ! 3 1 o
lease rate is calculated along various contours around the crack X (0,'2) £z
tip and their average values are compared with a first order (b)
analytical solutione.

ELEMENT FORMULATION

Congider a 4-noded quadrilateral element as shown in Fig. la.
The element can be mapped into a square in the conventional
€,7) system of natural coordinates (Fige 1b)« Congider now a
local coordinate system (Ql,?z) defined by

R1=(24%+7M/4 and Q,=(2-%+7)/a (1)

In this (% ,‘22) system the coordinates of the four corner nodes
are shown }.n Figelb . The shape function Nj associated with
node i can be written in terms of equations of two element sides
which are not passing throigh this node. For example, the shape (03%) (<)
function associated with node 1 can be written as

Figel. Illustration used to derive the dis-

Nl = (+Q1—?2 —005)(Q1+ Qz_los) (2) placem:nt shape functions for a TSP
Note that the first expression is the equation of side 2-3, and el
the second expression is the equation for side 3-4. B,y = 1/{2)‘2( oMl 1)}

To facilitate an exponential variation of the field variable in
the directions Q37 and Qo, a geometric mapping is done. In this
(«,B) system, where o = Q%‘_l and B = ?22, the element is shown

in Fige. 1lc. The four displacement shape functions can be written
from the equations of four sides of the element in this coordin- 34

C, =1
Ay, = (-2} /2 21221}
B {z}‘l(z}‘ 2-1)}/ {2}‘2( 1-2"1)} - 1/2)‘2

[

ate system. These shape finctims are shown below. Cy = 22}‘2/{22}‘1(1-212)}
A
Ny = 0 (ApaQ7 46" Byg) (45,87 +R5%B5,) a1 o
_ A1 e A1 22 By = ~-1/2
Ny = Co(Ag Ry +954B5,) (A8, 748, +B,;) (3) ¢, =1 (2)
}\1 Xg kl }x2

5 =0 (Ad R +52*Bg) ( 01748 *Byp) fimctiong satisfy the completeness requirement only

’ o }:\L]_ 122 # A12 %1 lzg 12 slﬁgie}\;h:{g:l. If the element displacement field is interpolat-

Ny = Cu(hag Ry 48, +By o) (AnQ, e +B,,;) ed using these shap‘e; functions, i.ee .

= and v=2 V-
where =222 By, = -y u=EFN u N Vi,
512 ; B a TSP element is obtained. Arbitrary singularities can be got

= = : . h2 A The order of
e =12 2(1- 1) Y/ {2 (1-2 )} by assigning appropriate values to A1 and Age. e e
: H - - t -0 The
ingularities are -1+A; at 0 and -1+A, at .
Ags = 21/ (22(1-2D)) singuia 1 1 2 2
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derivatives of the shape finctions in (%,%) coordinates can be
found out by using the suitable Jacobian matrix relating (Q1,%2) P
;; and (£,7) systems. It may be noted here that (R1,Qg2) is linear- ttttt a=1mm
i 1y related to (€,%). In turn, (%,%) is linearly related to (x,y).
| The derivatives of shape finction (Nj's) retain the order of
e singularity even when any of the two cormer nodes are approached
i alongan arbitrary ray emansting from it.

=05

=2

o|— € €|

2L < O -0-04
To improve the completeness characteristics, the element dis- 2
placement field can be written - E =21 Eo4 Kg/mm
5 5 v=0-3

u =f Y uy and ve= f NV P =100 Kg/ mm 2

A A1, Ag Ao PR

N5 Ql (1_?1 ) Qz (1"?2 ) cx(l"cv) ..—(2w).._——-

a

where

where C_=21 at (0.5, 0.5), i=1,4 and
i 6 = 22NN (M (e

This modification gives rise to Z Ny=1 at the four corner 7

nodes, centre of the elemert and %lso along the two axes (%7,%2). ™
The us and vg, which can be thought of as nodeless variables,

are associated with the element only. The{ can be condensed at
the element level before the assembly of element stiffness 9
matrices.

CASE STUDIES T b
| (d)

Performance of the element is illustrated by presenting three
case studies. The first case deals with the double edge kinked a b
crack under tension (Fige 2a)+ The study is done for the kink I N /
angles of 15°, 309, 450 ang 60°, This case mainly concerns with \ /
the effect of mesh refinement surrounding the TSP element on the N =
J-integral computation. Fige 2 also shows the different dis- g >
cretization schemes for the regions near to kink and away from

i kink for a kink angle of 450. Three mesh arrangements are con-

i sidereds The first arrangement is obtained by combining 2b and 1

I 2d. The second and the third correspond to combinations of 2¢ // 7 RN

and 2d,and 2 and 2 respectively. For other kink angles the / \

relevant nodal coordinates near to kink are suitably modified.

J-integrals along three different contours around the crack tip / \

are calculatede Table 1 shows these values for all mesh patternse. (b) (c) g (e)

Their average values for verioug kink angles are compared with

| a first order analytical sclution (Cottrell and Rice, 1980). Fig. 2 (a) Dgt;%e edge kinked crack in a tension

The path independence of J and marginal effect of mesh refine- 8 .

ment on the Jpcomputati on sre seengi‘lzl-om these results. A crack ibg,gcg Discretization schemes away from kink.

i of this configuration will extend in an arbitrary angle with the d),(e) Discretization schemes near to kink.

kink. Similarly, a crack under mixed mode will extend out-of-

plane. Further studies on any of this type of extended crack goupited using tﬁgtgf?ﬁeﬁﬁeg‘ﬁﬁ:“iﬁm ;zg:gdw?tli gﬁgcgigl};‘

11 1 1 of - T m . e average c

e L ek G & Shdstple S 0CAit D55 alshenh order anaj%ytical solution (Cottrell and Rice, 1980) in Fig. 3b.

The second example is that of a 4-point bend specimen configura- The agreement ig good.

tion (Fig. 3a). The study is done for 6 in the range 15° to 90°

in steps of 150, The mesh arrangement is similar to the dis-

cretization schemes shown in Fige. 2b and 2d. The J-integral was
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Fige. 3(a) Single eige kinked crack under four
point bending.
(b) Comparism of computed J with an
anglytical solution.

The last example consists of a 3-point bend specimen configura-
tion (Fig. 4a). The study was done in thig case along the lines
similar to that of 4-point bend specimen. The average of com-
px_zted J values are compared with the analytical solution in

Fige 4b. The agreement ig again good.
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Fige.4 (a) Single edge kinked crack under three
point bendinge. .
(1v) Comparison of computed J with an
analytical solution.

CONCLUSION

We have presented an approach for the inclusion of more than
one poing of singularity in a single element. These case stud-
i es demonstrate that the approach is quite feasible. In all
the case studies the computed values of J compare closely with
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Table l. Effect of mesh refinement on J computa-
tion in the case of double edge kinked
crack problem

Mesh arrange- Mesh arrange- Mesh arrange-

ment-1 (No. of ment-2 (No. of ment-3 (No. of

Cottrell elements = 152 _elements = 236 elements = 256

) and  No.of nodes=172) No.of nodes=275) No.of nodes=287)

Rice
Jd along __.. J along ;____._ J along -
(1980) three  J-@ve three J-8ve three  9_8ve

;‘ contours Y28 contours T28® contours T9&°
| 0,01933 0.01924 0.01943

15° 0.019858 0.01885 0.01948 0,01875 0.01938 0,01920 0.01962
0.02026 0.,02017 0.02025
| 0.01746 0.01737 0.01762

‘ 30° 0,01789 0.01736 0.01774 0.01725 0.01764 0.01762 0,0178%7
0.01840 0.01831 0.,01838
0.01524 0.01509 0.01562

45° 0,01497 0,01509 0.01529 0,01493 0,01514 0.01548 0.01556
0.01555 0.01540 0.01558
0.01156 0.01114 0.01180

60° 0.01156 0.01157 0.01163 0,01114 0.01120 0,01176 0,01175
0.01177 0.01134 0.01169

i first order amnalytical solution due to Cottrell and Rice (1980).
L In the first example path independence of J and marginal effect
! of mesh refinement on J computation are also demonstrated.
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