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ABSTRACT

The dynamic problem of a transversely isotropic medium containing a penny-shaped crack under
torsional vibration is solved in terms of an infinite integral that is evaluated through a contour
integration to be discontinuous in nature. The dynamic solutions reduce to the associated static
solutions when the forcing frequency vanishes for an isotropic material.

An exact expression for the dynamic stress intensity factor is obtained in terms of the frequency
factor and the anisotropic material constants. The maximum values of the normalized dynamic
stress-intensity factor are shown to occur at different frequencies with the same amplitude of 2.2
times the associated static stress-intensity factor. The distortion of the dynamic crack surface
displacement from the associated static displacement depends also on the forcing frequency and the
material anisotropy.
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INTRODUCTION

The scattering of a plane longitudinal wave by a penny-shaped crack in a transversely isotropic
material was investigated recently (Tsai, 1987). The wave was harmonic in time, impinging
normally on the crack surfaces. The maximum value of the dynamic stress-intensity factor was
shown to depend on the wave frequency and the material anisotropy (Tsai, 1987). Many fiber-
reinforced composite materials and platelet systems are characterized as being transversely isotropic
and have fine elastic constants (Christensen, 1979 Postma, 1955). Hexagonal aeolotropic crystals
are also characterized as transversely isotropic media (Elliott, 1948).

The torsional vibration of an isotropic elastic solid containing a penny-shaped crack was investigated
with the method of Hankel transforms (Sih and Loeber, 1968). The problem was reduced to the
solution of two simultaneous integral equations of the Fredholm type. The processes of solving the
integral equations involved numerical calculations of infinite integrals. The dynamic stress field
near the crack tip was shown to be singular. The singularity parameter involved was described as
essential to a clear understanding of the propagation of cracks through structural components
undergoing torsional oscillations (Sih and Loeber, 1968).
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The dynamic response of a penny-shaped crack to a torsional oscillatory stress on the crack surface in
a transversely isotropic medium is investigated in the present work. The method of Hankel
transform is used to solve the equation of motion and satisfy the boundary conditions. The infinite
integral involved is evaluated through a contour integration. The results reveal the discontinuous
nature of the infinite integral. An exact expression for the dynamic stress intensity factor is obtained
in terms of the anisotropic material constants and the loading frequency. The maximum value of the
dynamic stress intensity factor is shown tooccur at different frequencies for different materials. The
dynamic crack surface displacement is shown to deviate significantly from the associated static crack
surface. Four anisotropic materials, including composite materials and a metallic substance, are
used as example materials in numerical calculations.

FORMAL SOLUTION

The stress-strain relationship in eylindrical coordinates (r, 8, z) for a transversely isotropic medium
can be written in the following form (Tsai, 19873 Christensen, 1979: Postma, 1955):
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The z-axis is along the axis of symmetry of the material. A penny-shaped crack with radius a is
assumed to locate inside the material, z being normal to the crack surfaces. Torsional oscillatory
stresses are assumed to act in opposite directions on the crack surfaces (Sih and Loeber, 1968). The
displacement field of the scattered waves generated by the crack can be described as (0, Ug, 0). If the
strain-displacement relations and the stress-strain relations in Eq. (1) are used, the equations of

motion have only one non-vanishing component (Sih and Loeber, 1968) and can be written in terms of
the displacement as follows:
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where A is the density of the medium and v is the time variable. In response to the torsional crack
surface stresses, the displacement can be written as
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where w is the frequency of the applied shear stress. If the first-order Hankel transform is applied to
Eq. (2) over the variable r, the transformed equation in terms of the parameter s has the following
form:
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where V1 is the first-order Hankel transform of v.
The boundary conditions for the scattered wavefield at z = 0 can be written as
; 6
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The unknown crack surface function ¢ is to be determined later. The transformed equation offmotl?n
and the boundary conditions can be satisfied if the transformed displacement of the following form is

chosen: ®
=Ae R N .

The equation also satisfies the radiation condition. The displacement boundary conditions in Eq. (7)

require the constant A to be
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The stress boundary condition in Eq. (6) will determine the crack surface function &(r).

CRACK SURFACE DISPLACEMENT

The shear stress in Eq. (1) is calculated in terms of Eqgs. (8) and (9) and the result atz = 0 can be
written as
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Equation (10) reduces to Eq. (11) if the frequency tends to zero. T?:e function ¢ in the reduced,
associated, static equation in Eq. (11) is solved and has the following form:

0= =8¢, [o s2Jl(sr)$1ds

2 o
n A m-o (12)
Wit _ 2 r — r L I i] ——% _ dmd\dndt
® 2 ol ye_ g2 ¢ n2lo A 1o (/)2 2

An integral identity in Watson (1966) is used to obtain the above equation,'which is now integrated
out for 0499 = -T,, giving the following associated static crack surface function
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where p = r/a. The above crack shape function agrees with the associated static function in Sneddon

and Lowengrub (1969).

The operations on the right-hand side of Eq. (12) are applied to Eq. (10). An integral equation for the
dynamic crack surface function is established as follows:
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The above infinite integral is evaluated by the techniques ?fconwur integration (Tsai, 1987: Lamb,
1904: Tsai and Kolsky, 1967) to have the following discontinuous nature:
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where B = w/c8. The integrations in Eq. (14) are all of finite range. In view of Eq. (17), the crack
surface function is a complex-valued function. If the order of integrations between  and \ are
exchanged, Eq. (14) becomes the Fredholm integral equation of the second kind. If the

transformation s = wn/cy is used and theother integration variables are normalized by the crack
radius a, Eq. (14) is reduced to an integral equation to solve for the normalized crack shape function ¢
= ¢1 + ipg = P2cqq/t,a in terms of the frequency factor k = aw/ce. The nondimensionalized integral
equation is solved numerically for the example materials, which are described in the next section.

DYNAMIC STRESS INTENSITY FACTOR

The shear stress around the crack tip is singular. To reveal this singular nature, the transform in
Eq. (9) is calculated in terms of Eq. (14) (Watson, 1966) and has the following form:
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The shear stress in Eq. (10) is found to recover its prescribed value for r < a. Forr > a, integrations
of Eq. (11) in terms of Eq. (18) yield
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where the nondimensional quantity G is equal to 4G(a)/nicgqr,. G'(£) is the derivative of G(§). The

second term on the right-hand side of Eq.(10) is also integrated. In terms of Eq. (19), the shear stress
for r > a has the following form:
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The shear stress is found to be vanishing when r tends to infinity. The singular term of the shear
stress is the first term on the right-hand side of Eq. (19). From this singular term, the dynamic stress
intensity factor is determined as follows:
= = (21)
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The nondimensional function G depends ¢n the frequency ratio k and the ratio 8 of the material
constants. For an isotropic material, § reduces to unity. When k is equal to zero for an isotropic
material, Kp reduces to the associated static stress intensity factor Kjjj (Sneddon and Lowengrub,
1969). It is also noticed that og, and ¢ reduce, respectively, to the associated static stress and crack
shape function for an isotropic material atk = 0 (Sneddon and Lowengrub, 1969).

Both composite and metallic materials are used as example materials for the study of the combined
effects of the material anisotropy and theflorcing frequency. Graphite/epoxy and E glass/epoxy
composites have been described as transversely isotropic materials (Behrens, 1971). The material
constants for graphite/epoxy composite arecy; = 0.828, c33 = 8.68,c13 = 0.0285, ¢;5 = 0.2767, and
caq = 0.4147; for E glass/epoxy compositethey are c1; = 1.493, c33 = 4.727, ¢;3 = 0.5244,

c12 = 0.6567, and cgq = 0.4745, all in the unit of 104 MN/m2 The material constants for magnesium
also in 104 MN/m2 are ¢1; = 5.97, ¢g3 = 6.17,¢13 = 2.17,¢12 = 2.62, and cg4 = 1.64 (Elliott, 1948). To
have a wider range of real material constants for comparison, the limestone/sandstone layered system
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is also used as an example material. The constants for the system in 104 MN/m2 arecyy = 6.25,
cg3 = 4.57,¢13 = 1.74,¢12 = 2.19, and cqq = 1.4 (Postma, 1955).

The normalized crack shape function for all the above example n}aterials and an isotropic mﬂu;rmllq y
are solved from the Fredholm integral equation in Eq. (13) by using th(.e nu.merlcal procedu;ﬁs /evl.xc
in Baker et al. (1964). Typical crack surface displacements are shown in Fig. 1 for the grap n;e c‘zo y
composite and an isotropic material at the frequency fact..ors of 0, 0.6., and 1.2. The d*)'mamu: s rrebcwr
intensity factors calculated from Eq. (20) are shown in Fig. 2 for a.w1de. range of the frequency fa

to reveal their maximum values. The value of the ratio 8 is also given in Fig. 2.

1.5

1.0 ’/\

] e
Y i
©
o
d
=
3 0.5
(&)
o~
GRAPHITE/EPOXY COMPOSITE (GE)
ISOTROPIC MATERIAL (ISO)
| ] ] |
°-%0 0.2 0.4 0.6 0.8 1.0
r/a )
Fig. 1. Normalized crack surface displacement.
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Fig. 2. Normalized stress intensity factor.
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DISCUSSION AND CONCLUSIONS

The torsional vibrations of a transversely isotropic medium containing a penny-shaped crack is
investigated with the method of Hankel transform. An infinite integral involved in the process of
solution is evaluated through a contour integral and shown to be discontinuous in nature. The
dynamic solutions reduce to the corresponding static solutions when the forcing frequency vanishes

for an isotropic material.

An exact expression for the dynamic stress-intensity factor is obtained in terms of the frequency
factor k and the material constant ratio 8 = (¢ - ¢12)/2c44. The maximum values of the normalized
dynamic stress-intensity factor are shown in Fig. 2 to be 2.2 times the corresponding static stress-
intensity factors for all the example composite and metallic materials considered. The value of the
frequency factor at which the maximum dynamic stress-intensity factor occurs increases if the value
of § increases.

The distortion of the dynamic crack surface displacement from the associated static displacement
depends also on the values of k and §. At the value of k = 1.2, the normalized crack surface
displacements for both the graphite/epoxycomposite and the isotropic material are seen in Fig. 1to
have wavy forms with different amplitudes.
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