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ABSTRACT

This paper studies the expansion of the stress intensity factors ( SIF’s) at the tip of a kinked and
curved crack in powers of the crack extension length, and more specifically the influence of the
curvature parameters of the extension on these SIF’s. Using "universality " properties established
elsewhere (Leblond, 1988), one shows that general results can be obtained by considering the spe-
cial case of a straight initial crack extended in an arbitrary direction by a slightly curved secon-
dary branch, in an infinite body loaded by uniform forces at infinity. A perturbation technique
analogous to that of Cotterell and Rice (1980) is used to reduce the original problem to one in-
volving a simpler geometry, namely a crack composed of two straight branches. This problem is
then solved by means of Muskhelishvili’s (1953) method and conformal mapping. Formulas for the
curvature parameters of the crack extension usable for numerical predictions of crack paths are
finally given.
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INTRODUCTION

Consider (Fig.1) a two-dimensional elastic body under plane strain conditions, containing a curvi-
linear crack with a small kinked and curved extension of length s. Let mm (-1<m<+1) denote the
kink angle, and let the shape of the extension be described by

* C*
h=ax32%+ —2—x2 + O(x5/2) (1

where h denotes the distance from the point considered to its projection on the tangent to thg
extensi*on at the angular point O, x the distance from the point O along the extension, and a
and C* parameters (Fig.1). It has been shown in Leblond (1988) by general arguments that the
stress intensity factors (SIF’s) kp(s) (p=1,2) at the tip of the extended crack admit an expansion of
the form

k() = kp* + kp(llz)\/E + kp(l)s + O(s3/2) ?2)
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where kp', kp(l/z) and l%(l) are given by

m
k' = Fpgmk, ; k0 - [kp“/z)]ﬂ,dJ +a"H, (m)k,

1 1 ‘rm,a‘
KM - [kp( )]C.ﬂ + C*M(m)k, . ®)
In these equations the ky’s (g=1,2) are the original SIF’s at the point O, the qu’s, Hp s, Mpq’s

c'=
for a zero C*. The functions qu’s describe the asymptotic form of the SIF’s when s tends to
zero; the functions Hpq’s and Mpq's describe the influence of the curvature parameters a', C* of
the extension on the next terms of the expansion of the SIF’s. The validity of formulas (2,3) is
established in Leblond (1988) in the most general situation: arbitrary geometry of the body and
the crack, arbitrary loading; for this reason the functions qu’s, H, %, M, ’s of the kink angle
are termed "universal” in Leblond (1988).

*
functions of m, [kp(ll 2)]:::0 the value of kp(ll ?) for a zero a', and [kp(l) ]",Mo that of kp(l)

Fig. 1 : General problem considered.

Previous works concerning the analytic determination of the functions Foq'ss H.’s, M .’s can be
summarized as follows. The F__’s have teen calculated by various authors (Bilby er a1.,p1 977; Wu,
1978 a,b; Amestoy et al., 19753] by considering the special case of a crack composed of two stra-
ight branches in an infinite body loaded by uniform forces at infinity; the simplest solution is
that of Amestoy et al. (1979), which uses Muskhelishvili’s (1953) method and conformal mapping.
On the other hand, the H_ and functions have been determined only to the 0! order in m,
by Sumi er al. (1983), aquto the 1% order, bx Karihaloo et al. (1981); these authors considered a
nearly straight crack (small parameters m, a , C*) and used Cotterell and Rice’s (1980) pertur-
bation method to reduce the problem to one involving a rectilinear crack.

This paper presents a method of calculation of the Hpq‘s and Mpis for all values of the kink
angle 7m. Formulas expressing the curvature parameters of the crack extension in terms of these
functions are given, using the "principle of local symmetry” (Goldstein and Salganik, 1974) as a
propagation criterion. These formulas can be used for numerical predictions of crack paths.

PRINCIPLE OF THE METHOD

Because of their "universality" property, the functions Hpq’s and M/ ’s can be determined by
studying the particular case of a straight main crack extended in an arbitrary direction by a
curved extension (of shape described by eqn(1)) in an infinite body loaded by uniform forces at
infinity (Fig.2). Since the expressions (3339) of k,(1/2) and k,(1) are linear in a* and C* respec-
tively, exact results can be obtained by using a 1** order perturbation technique with respect to
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these parameters. Such a technique will be used to reduce the problem to one ior_n;em_edlv:ml\hz
crack with two straight branches, namely the main crack plus a second_ary branc . ]1 ;:.n}tlnc.al L of e
secant AB or BC (Fig.2). The latter problem will be solved with thg a.ld of Muskhe 1skv1 lfss or-
malism and conformal mapping. This method combines thus the main ideas of the7 works }1‘) tuhm1
et al. (1983) and Karihaloo et al. (1981) on the one hand, and _Amestoy et a/. (19 9)' ondt te [ eﬁ
hand. The kink angle will be allowed to take arbitrary valugs instead of being restncttl:( f)t hsri'na
ones like in Sumi et al. (1983) and Karihaloo et al. (1981),' since the problem of a c11;1_79 with two
straight branches can be solved exactly for all values of this angle (Amestoy et al., ).

N, AB=BC=s
CD=DA=2I

Fig. 2 : Particular case studied.

EQUATIONS OF THE PROBLEM IN THE PHYSICAL PLANE

The problem in the physical Z-plane consists in finding Muskhelishvili’s potential§ '<1> and ¥, ana-
lytic everywhere except on the (real) crack, and subject to the boundary condition and to the

conditions at infinity
d(Z) + Z<IT(Z) + \ITZ) = Cst on the crack; 4)
H(Z)=TZ + (1) ; W(Z) =T"Z + O(1). (5)
Wln the latter equation I’ and I" are given in terms of the stress tensor at infinity by

T=(N, +N)/4 5 T = (N, - Ny) %172, ©

N, and N, being the principal stresses at infinity and 7 the angle between the OX, axis and the
first principal direction (Fig.2).

Following Cotterell and Rice (1981), we associate to ¢ and ¥ some functions.<l>a and ¥2 whicl:
are identical to ® and ¥ except that their cut is alory; the sgcam AB or BC instead of the rea
crack, and we expand & and U2 to the 1* order ina and C :

2= +® +.. ; V=V +V +... (7)
1 crack. If Z is on the secant,
Let n denote the gap between the secant AB or BC and t}'ne rea ]
Z+ Z(Z) is on the real crack, and ®[Z + n(Z)] = ®*(Z) + P> (ZN(Z) = ®(Z) + @, (Z)q('Z) + ¢I>1(hZ)
to the 1% order in n; similar equations hold for & and ¥. Thus the boundary condition on the
deviated branch can be written
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BU(Z) + BH(ZINZ) + B,(Z) + [Z + NZ)®,'(Z) + B, (ZINZ) + B,(2)]

+ W (Z) + V/(Z)(Z) + ¥(2) = Cst for Z € AB or BC.
This equation holds also for Z € CD or DA, taking n(Z) = 0 in that case. Identifying terms of
order 0 and 1, we get the boundary conditions for &, ¥, @, 9, :
D, + Z(ITO’+ _\It—o = Cst

_ } for Z € ABCDA. (8)

d, + Z<I_>_;’+ ;1 + @+ (I>_°’n+ Z<I>o’;+ @:',;= Cst

Expansion of eqns.(5) to the 1% order in n yields similarly the conditions at infinity for @, ¥,
2, :

Oy(Z) =TZ + O(1) ; @(Z) = O(1) ; ¥(Z) =T'Z + O(1) ; ¥,(Z) = O(1). ©)

The principle of the treatment will be to solve the problem for the 0t order functions ., ¥,
then that for the 1% order functions ®,, ¥,, which is quite analogous except that eqn.(8,) in-
volves a "second member" expressed in terms of the Oth order solution.

CONFORMAL MAPPING ONTO THE z-PLANE;
REDUCTION OF THE PROBLEM TO INTEGRAL EQUATIONS

Conformal mapping-Problem in the z-plane. The exterior of the crack ABCDA can be mapped

onto the exterior of the unit circle % in a new z-plane (Fig.3), by defining (see e.g. Dudukalenko
and Romalis, 1973) :

7 = 0F) = RO (e g PR (10)

In this equation 7 is the angle between the OX, axis and the secant AB or BC (see Fig. 2), and
R and o are related to i, s and the length 2¢ of the principal crack by

>

£=2R cosl'm[a—;é] cosl+';'[°‘—£§] ;. s=4R sin”m[-"-‘%ﬁ] sinl™ [Ot_ié] ;

sin f = m sin a am).

Fig. 3 : The z-plane.
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Defining ¢;(z) = ®;(Z) and Pi(z) = ¥(Z) (i = 0,1), eqns.(8,9) become
b0 + %:i;;% ¥, = Cst

_tar E i
¢1+u_":, 1’+¢1+[¢—° +—_—,] n+[w¢° —w-L— += | 7 = Cst

;
o Yo
W W w'? w 7]

forze %, (12)

$4(2) = TRE™240(1) ; $,(@) = O(1) ; $(2) = PRe™z+O(1) 5 ,(2) = O(1). 13)
Integral equation for the 0th order problem. It has been shown in Amestoy (1987), Hussain et al.

(1974), Chatterjee (1975), using Plemelj’s formula, that eqns.(12,,13,,13;) for the 0th order func-
tions ¢, ¥, lead to an integral equation for ¢y’ :

$,'(2) = $%2) + L£4,/(2) (14)

where the integral operator & and the function ¢, are given by

£x(@) = l—e?‘".“ J (t-ei®) (t-e-i@) X(1) dt : a5)
2ix 6t (t-eif7) (t+e7f) (t-2)2
$,/%z) = TRei™ + (I + T) Re"im/z2 . (16)

The integral in eqn.(15) is taken over the arc 6 = abc (Fig.3); the pole eif of the integrand is

slightly displaced towards the exterior of %, i.e. it must be understood as 'eiﬂ_= ei(B-i9) | >0, e—0.
It is also shown in Amestoy (1987) that ¥, can be expressed in terms of ¢, as

TRe-i™ 7 (z-€i®) (z-e7'*) $.12)
z (z-€iP) (z+e F)

¥y(2) = (T + ") Rel™ 7z -

L J 2002 (o) 4610 o + Cst  (where g% = B+ie) . an
6

2r (t-e#") (t+e7i6) (z-1)
Integral equation for the ISt order problem. The treatment of eqns.(12,,13,,13,) for the 18t order

functions ¢,, ¥, is quite analogous to that for the Oth order functions ¢, ¥,, and leads to an in-
tegral equation for ¢, analogous to eqn.(14) for ¢ :

$,'(2) = $,(2) + £4,'(2), (18)

where the "second member " ¢,° is expressed in terms of the 0! order functions ¢, ¥, :
) ! b %, iy i Wby W)= . o
$,%2) = 5~ ,[g [w, +5,—] n +[T'2 =t |7 dt / (t-z) (19)

Like in eqn.(15), the integrand has a pole at ¥, which must be understood as '8,

Stress intensity factors. Once the functions ¢4, ¢,’ are known, the SIF’s at the tip of the
extended crack can be obtained through Andersson’s (1969) formula :

K,(5) - iky(s) = 2V [4,°(€%) + ¢,'(€)] e¥/% [w(e¥ Jria (20)
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where § is the angle between the OX, axis and the tangent to the crack at its tip (see Fig.2).

Expansion in powers of s. Formulas (14-20) allow for the calculation of the SIF’s for arbitrary
values of the crack extension length s. To obtain the expansion of the SIF’s in powers of s, and
hence the Hpq and Mpq functions, one must perform an expansion of these formulas in powers
of s. This is equivalent to an expansion in powers of a since eqns.(11) imply that o = O(st/2).
This is achieved by a "double scale technique", using the following change of variable and func-
tions :

z = el*f ; ¢(2) = e [U;(§) + aV;(§) + a2Wi(€) + Oe)]
¥'(2) = e [X{() + aY;() + O(e?)] (i=0,1). (21)

This is the same change of variable and functions as that used previously by Amestoy et al.
(1979) for the study of the Fp, functions.

The calculation is straightforward but heavy, and therefore will not be presented. It leads to in-
tegral equations for the unknown functions which involve the same integral operator as that
encountered in the study of the Foq functions (see Amestoy et al., 1979); only the "second
member" is different. The solutions can be obtained in the form of series, using the fact that the
operator is contractant for a certain norm (see Amestoy et al., 1979).

FIRST ORDER EXPRESSIONS AND NUMERICAL CALCULATION
OF THE H,;'s AND M, ’s

Exact expansions of the H s and M ’s to a given order in m can in theory be obtained by
truncating the series giving the solutions of the integral equations in a suitable way, and per-
forming the calculations analytically; however, because of the length of the procedure, this is
feasible in practice only for low orders in m. One gets thus the following 1®¢ order expressions of
the Hp,;’s and M,,,’s, and 0t order expressions of the Hp,’s and Mp,’s :

9mm . 3
Hu=-g" + Hu=j

<
I

_3__7[]2 . N[21 = % ; (22)

9 . . 3 .
Hy=-2 § H,=0 ; M,=-3 ; M,=0. @3)
These equations agree with the results of Sumi et al. (1983) and Karihaloo et al. (1981), once
some calculation errors have been corrected in the latter work.
Numerical values of the H_, and My, functions for arbitrary values of the kink angle can also

be obtained by computing pt‘ile series numerically. Results are presented in Tables 1 and 2. The
(absolute) accuracy is of the order of 1073

CONCLUSION : APPLICATION TO THE NUMERICAL PREDICTION

OF CRACK PATHS.
Using the (now widely accepted) "principle of local symmetry" of Goldstiin and Salganik (1974)
as a propagation criterion, one must equate to zero the successive terms k, , kz(liz), k,()... of the
expansion of k,(s). This yields the value of the geometric parameters 7m, a , C ... of the crack
extension:

F,,(m)k, + F,,(m)k, =0 (hence m); (24)
(1/2) |™ *
k, Joot? [H,,(m)k, +H,,(m)k,] = 0 _—
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Table 1 : Values of the Hyq functions.

Angle(°)  Hj, H,, H,, H,, Angle(®) Hy Hj, H,, H,,
0 0 -2250 0.750 0 40 -0.669 -1.460 0474 -1.250
25 -0.049 -2.247 0.749  -0.095 425 -0.696 -1.369 0.442 -1.294
5 -0.098 -2.236 0.746  -0.189 45 -0.721 -1.276 0.410 -1.334
7.5 -0.146 -2.219 0.740 -0.282 475 -0.743 -1.180 0.377 -1.368
10 -0.194 -2.196 0.731 -0.375 50 -0.763 -1.082 0.344 -1.396
125 -0242 -2.166  0.720 -0.465 52,5 -0.781 -0.982  0.310 -1.4I9
15 -0.288 -2.129 0707 -0.553 55 -0.796 -0.881 0.276 -1.436
17.5 -0.333 -2.086  0.693 -0.639 57.5 -0.809 -0.779  0.241 -1.448
20 -0.377 -2.037 0.675 -0.723 60 -0.819 -0.677 0.207 -1.454
225 -0420 -1.982 0.656 -0.803 62.5 -0.827 -0.574  0.173 -1.455
25 -0461 -1922  0.635 -0.879 65 -0.833 -0.472  0.139 -1.450
275 -0.500 -1.856  0.612 -0.952 67.5 -0.836 -0.371 0.105 -1.440
30 -0.538 -1.786  0.587 -1.021 70 -0.837 -0.270  0.072 -1.424
325 -0.574 -1.710  0.561 -1.085 72.5 -0.835 -0.171 0.040 -1.404
35 -0.608 -1.631 0533 ~-1.145 75 -0.832 -0.073  0.009 -1.378
37.5 -0.639 -1.547 0504 -1.200 775 -0.826  0.022 -0.022 -1.348
Table 2 : Values of the M, functions
Angle(®) My M, My, My, | Angle(®) My My, M, My,
0 0 -1.500  0.500 0 40 -0.446 -0975  0.328 -0.791
2.5 -0.033 -1.498 0.500 -0.060 425 -0.465 -0915 0.309 -0.819
5 -0.065 -1.491 0497 -0.119 45 -0.481 -0.853  0.289 -0.845
7.5 -0.098 -1.480  0.494 -0.178 475 -0496 -0.789  0.268 -0.866
10 -0.130 -1.464 0.488 -0.236 50 -0.510 -0.724 0.247 -0.885
125 -0.161 -1.444 0.482 -0.294 52.5 -0.522 -0.657 0.226  -0.900
15 -0.192 -1.420 0474 -0.349 55 -0.532 -0.590 0.205 -0.911
17.5 -0222 -1.391 0.465 -0.404 57.5 -0.541 -0.522 0.183 -0.919
20 -0.252 -1.358  0.454 -0.457 60 -0.548 -0.454  0.162 -0.924
225 -0.280 -1.322 0442 -0.507 62.5 -0.553 -0.386  0.140 -0.925
25 -0.307 -1.282 0429 -0.556 65 -0.557 -0.318  0.119 -0.922
275 -0334 -1.238 0415 -0.602 67.5 -0.559 -0.251 0.978 -0.916
30 -0.359 -1.191  0.399 -0.645 70 -0.560 -0.184  0.077 -0.907
32,5 -0383 -1.141 0383 -0.686 72.5 -0.559 -0.118  0.057 -0.895
35 -0.406 -1.089 0.366 -0.724 75 -0.557 -0.053  0.037 -0.879
37.5 -0.427 -1.033 0347 -0.759 77.5 -0.553  0.011 0.018 -0.861
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. [kz“/”]’?:
a =0 (25)

a4 =-
H,,(m)k, + H,,(m)k,

]ma’ .
[kz ]c*=o + C* M, (m)k, + M,,(m)k,] = 0 —
() Jrma’
PR i .
& = M o (26)

" M,,(m)k, + M,,(mk,

These formulas can be used for numerical predictions of crack paths by a step-by-step method,
in the following way. At a given step (i.e. for a given crack geometry), k, and k, can be com-
xm

puted numerically; eqn.(24) gives then the value of mm. Next [kz(l/ 2)];_0 can be computed by

comparing the original SIF’s with those at the tip of a small straight extension in the direction

+
#m,a
mm, and the value of a* is then deduced from eqn.(25). I:kz(l)] ot AN also be determined in a

similar way, using a gmall extension having an a* equal to the value determined but a zero C*,
and the value of C  is then deduced from eqn.(26). The crack can then be "numerically
extended", using a remeshing procedure, according to the values of mm, a*, c* determined; the
extension is to be stopped at a small, arbitrary distance from the original crack tip. The next step
can then be carried out.

In essence, this was the procedure used by Sumi (1986 a,b) for the study of crack paths in some
configurations of practical interest; however it was impaired by the incomplete knowledge of the
functions Hpq’s and Mpq's. The present work fills this gap.
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