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ABSTRACT

The line-spring model for surface cracked shell with arbitrary principal
curvatures and under antisymmetric loadings in respect to crack plane are
formulated for the unimproved and improved models. The numerical resulis
show that the improved model is more suitable than the unimproved one.
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INTRODUCTION

The line-spring model for surface cracked shell with arbitrary principal
curvatures and under antisymmetric loadings in respect to crack plane are
considered in this paper. The combination of this model and the symmetric
one(Tang and Lu, 1987) will furnish the solution of line-spring model for
surface cracked shell under the general loadings, i.e. the mixture of mode I,
II and III. The numerical results are compared with the existing solutions
of the alternative method in the case of plate(Smith and Sorensen, 1974).
It is shown that in the range of 0<a,/c, < 1.0, the solutions of improved
model are better consistent with those of the alternative method (Smith and
Sorensen, 1974) than those of unimproved model. The numerical results for
the general shallow shell with a surface crack are also given.

THE PRESENT MODEL

As shown in Fig.1, the surface cracked shell can be simulated by the Reis-
sner shallow shell with a through crack, in which the distributed line spr-
ings are embedded. The constitutive relations of springs are taken as the
relations between the generalized forces and displacements of the plane
strain edge cracked strips, Fig.1(c). The stress intensity factors of sur-
face crack are then obtained from the edge cracked stirips for the unimproved
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model. However, the curvature effect of crack front which gives rise to the
interaction between springs has been omitted in this model. From the solut-
ion of embedded elliptical crack in infinite body(Kassir and Sih, 1975), the
improved solutions of edge cracked strip considering the interaction effect
can be derived and the improved constitutive relation of the line spring are
formulated from energy principle.

THE BEHAVIOR EQUATIONS OF SHALLOW SHELL UNDER ANTISYM-

METRIC LOADINGS
The shallow sheel with arbitrary constant principal curvatures and with a
through crack and the loadings which are antisymmetric in respect to crack
plane are shown in Fig.1(b). The solution based on the Reissner—type shal-

low shell theory has been obtained by us from Fourier transform. We call it
as the behavior equations
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where ('Vﬂ Ze= ‘”/‘1 =%, =Tk, la= L7 Za= =6Q7/ek , F=#/co,
(_;\“—);% , R=r(-»)CR* Gj(f) (j=1, 2, 3) are dimensionless dislocation

densities, and n=0 and 1 are corresponding to outer and inner surface crack
respectively.

CONSTITUTIVE RELATIONS OF THE LINE SPRINGS

Solving the edge oracked strip as shown in Fig.1(c), the stress intensity
factors of the edge crack are found as follow

Kpe=J% Tadz3) | (2)a
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where )',: a‘/{ .

For the strain energy of the edge cracked strip U, we have
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where U, is the strain energy of the strip without the crack. Therefore the
constitutive relations of the line spring can be found as follow
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Introducing the dislocation densities G (t) (3=1,2,3), the constitutive
relations become
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where H(t) is the Heaviside unit function and ng and )fw (» y M=M, B) are
known functions of X. In these relations, the curvature effect of crack
front which gives rise to the interaction between springs has been omitted,
For this reason, there are not transformation of stress intensity factors
between mode II and III along the surface crack front in this unimproved
model. The constitutive relations considering this effect can be derived
from the solution of embedded elliptical crack in infinite body.

For an embedded elliptical crack subjected to shear stresses Tqand Tu +

T (,_ 12) on the crack face, the stress intensity factors are respectively
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where @ is the parametric angle of ellipse.

With the help of directional derivative formulas of strain energy U, we have
a9 d sing (8)

du
iz ey cosf + T
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where n and T are normal and tangential variable of elliptical front respec-—

tively. Because gl_lc = 0, eq. (8) becomes
gtzl = :g cos @ (9)
as 2
where cosf= sinF /(8in2g + 23 coszld )2

From the relations —ao- = Gg sad —gl‘f— = G, we derive
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By introducing the boundary correction, the improved stress intensity factors
of edge cracked strip, Kryz and Kryyg, is then obtained. Similarly the

strain energy of the edge oracked strip takes the form of eq.(3) and there-
fore the improved constitutive relations of the line spring are
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RESULTS AND CONCLUSICNS
The systems of basic integral equations of the unimproved model and the

improved one can be obtained by substituting eq.(5) and eq.(11) into eq.(1).
For the unimproved model, we have
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This is a system of cauchy-type singular integral equations and it can be
solved numerically by Gauss—chebyshev quadrature(Erdogan and Gupta, 1972).
Using these solutions, the line-spring foroes, 7,5 7y and 7, , can be
obtained from eq.(5) and the stress intensity factors Kyrz and Kiyrz can be

caluclated from eq.(2). For the improved model, the only need is the sub-
stitution of ’S’/E and 3‘/’- for y* and yT .
aQ M 2Q i

The numerical results of surface cracked plate or shallow shell with h/Rx =
0.0001 are illustrated in Fig.2(a), (b) and (o). It can be seen that the
results of improved model are fairly consistant with those of alternating
method in the range 0<a°/o°<1.0, but the results of unimporved model are
rather unsatisfactory, particularly for mode II. In these figures, M2 =

K T {_1_1@3: , M3 = Kn Z:f?’ y Q= 1 .464(a, [c,)1+65 and 6=—}Z‘—€ . The
stress intensity factors for the outer and inner surface crack in general
shallow shell are given in table 1 to table 4. In these tables, e = R.x/f{y
and Ry and R.y are two principal curvature radiuses of the shell.

The combination of this model under antisymmetrical loading with one under
symmetrical loading can carry out the analysis of surface orack in varions
shell structures under complex loadings, i.e. the combination of mode I, II
and III loadings.

Fig. 1
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Table 2. Mip=K; . /ffa/ » Mi3=Kirr1/[Ta& » 30/00=0.2,

L =08 8,/h=0.2, T, =1.0, 7;=0.0, 73"=0.0
g § Lo &ce e ¥/ B 0° 20° 40° 60° 80° 90°
™ . _ :: Iy 0.05 Mjo 0.0000 0.0742 0.1544 0.2644 0.5049 0.6172
S : Mj3 0.7204 0.7018 0.6444 0.5362 0.3009 0.0000

—a— Alternatiy
—e— Unimpreved
Umpraved

Mi» 0.0000 0.0749 0.1556 0.2654 0.5094 0.6226
Mi3 0.7206 0.7021 0.6446 0.5364 0.3075 0.0000

0.20 Mj> 0.0000 0.0770 0.1597 0.2679 0.5128 0.6237
° Hi3 0.7209 0,7030 0.6447 0.5360 0.3104 0.0000

5.0 Wiz 0.0000 0.0742 0.1583 0.2645 0.5050 0.6073
05 Ni3 0.7203 0.,7021 0.6446 0.5364 0.3100 0.0000

0.5 0.10 Mjp 0.0000 0.0749 0.1559 0.26T1 0.5322 0.6451
s : Mj3 0.7213  0.7032 0.6461 0.5393 0.3263 0.0000

" Miz 0.0000 0.0771 0.1600 0.2705 0.5207 0.6271
(a) (©) o) 020 y;3 0.71222 0.7038  0.6457 0.5373 0.3174  0.0000
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Fig.2 Table 3. M,,=K,I1//Tav@ » Ha-}_&nx/W s b/Ry=0.2, a,/
/ /TR y 0,=0.2, a,/h=0.2, 7y=1.0, 75 =0.0, Zg=0.0
Table 1. M,o=K ’TW- 4 » Mo3=K Mae/A 3 Bo/Co=0.2 €=0.0 e=q,2 e=o, e=q,
a°_o.;if 1‘51.0, fr,“’.gfé:,[ z""=0.0° ’ 6 My U Mgy M2 °C My3 Moo Ohw, 3 M,2°°6 w3
° e X 0° 0.0000 0.7185 0.0000 0.7187 0.0000 0.7186 0.0000 0.7191
e Rk, B 0° 200 40° 60° 800 900 20° 0.0732 0.7003 0.0733 o.zoos 0.0733 o.goos 0.0734 o.zmz
0° 0.1526 0.6431 0.1527 0.6436 0.1527 0.6432 0.1532 0.6450
0.05 Mop 0.0000 0.0734 0.1527 0.2631  0.5060  0.6095 goo o.zgze o.sgs 0.223§ 0.5364 0.223; 0.5363 0.2248 o.5§g3
M,3 0.7190 0.7008 0.6437 0.5363 0.3112  0.0000 80° 0.5011 0.3082 0.5088 0.3129 0.5087 0.3128 0.5364 0.3298
0.0 0.1 Mo2 0.0000 0.0733 0.1526 0.2630 0.5033 0.6040 90° 0.6026 0.0000 0.6134 0.,0000 0.6133 0.0000 0.6521 0.0000
' °"  M,3 0.7187 0.7008 0.6435 0.5359 0.3100  0.0000
M,, 0.0000 0.0732 0.1526 0.2628 0.5011 0.6026 - - . = -
%2 -2 0.1185 0.7003 0.6431 0.5355 0.3082  0.0000 s e Wp Ki-(I)I/Ji”/"/ 10"13 If;‘I'II/JoW/&“théRx ?_‘25’0
0.05 Yoz 0:0000 0.0735 0.1530 0.644 0.5296  0.6426 20/0070:2, 8,/00.2, T7-1.0, 73™0.0, Zg=o0.
"2 M,y 0.T194 0.7015 0.6448 0.5389 0.3257  0.0000 t=0.0 e=0.2 €e=0.4 e =0.6
0.5 0.1 M2 0.0080 0.0734 0.2528 0.2640 0.5266 0.6332 6 Mio iy Mip M3 Mo Mi3 Mo My
iy : M,3 0.7189 0.7013 0.6437 0.5371  0.3211  0,0000 :
0.» Moz 0.0000 0.0732 0.1526 0.2637  0.5233  0.6206 23,, 8‘8328 8';3;3 8'8?‘.;8 8';?,;; 8’% 8’;3% 8'89(% 8’;322
*“ M, 0.7188 0.7005 0.6436 0.5364 0.3124 0.0000 o * * * ‘ N ° ° °
03 40°  0.1597 0.6447  0.1598 0.6455  0.1599 0.6461  0.1604 0.6463

60° 0,2697 0.5358 0.2705 0.5376 0.,2710 0.5387 0.2710 0.5392
80° 0.5094 0.3010 0.5218 0.3182 0.5334 0.3255 0.5337 0.3269
90°  0.6111 0.0000 0.6286 0.0000 0.6453 0.0000 0.6456 0.0000

REFERENCES

TANG, G.J. and Y.C.Lu (1987). The improved line spring model for surface
cracked shell subjected to symmetric loadings. roc.of Int. Conf. on
Fracture and Fracture Mechanics (Shanghai), pp.1§1—1§£.

Smith, F.W. and D.R.Sorensen (1974). Mixed mode stress intensity factors
for semielliptiocal surface oracks. NASA CR-134684.

Kassir, M.S. and G.C.Sih (1975). Three-dimensional Crack problems.
Mechanice of fracture, vol.2, pp.T74-116.

2392 2393




Erdogan, F. and G.P.Gupta (1972). On the numerical Solution of singular
integral equations. Quarterly of Appl. Maths., Vol.30, pp.525-534.

2394



User
Rettangolo


