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ABSTRACT

Micromechanics of damage in brittle heterogeneous materials and composites
requires analysis of a system of interacting cracks. The response path of a
crack system typically exhibits bifurcations such that the states on each
post-bifurcation branch can be stable yet only one branch can be reached in
4 stable manner. Recent results on thermodynamic criteria for stable states
and stable response paths of inelastic structures are reviewed and
formulated in terms of the incremental internal entropy of the system. The
incremental entropy, which can be expressed in terms of second order work,
is then calculated for various points on the response paths of some typical
symmetric crack systems. It is shown that while the symmetric states may be
stable, the path which leads to them is unstable and cannot occur in
reality. Generally, nonsymmetry develops at the beginning of softening.

The results show that it is insufficient to model distributed cracking only
by means of crack systems and linear elastic fracture mechanics. Further
aspects, such as material heterogeneity, residual stresses, and cohesive
fracture zones for the microcracks, might have to be taken into account.
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INTRODUCTION

Softening damage in brittle heterogeneous materials such as concretes,
rocks, and various ceramics or composites, is due chiefly to microcracking.
The damage zones may or may not localize, and if they do localize the
structure failure is due to macroscopic fracture which is governed by some
form of nonlinear fracture mechanics with a softening cohesive zone. The
analysis of damage localization and fracture in these materials requires
knowledge of the properties of the damage zones containing microcracks,
which may be expressed in the form of either stress-displacement relations
or stress-strain relations. In view of the experimental difficulties in
directly measuring these properties, micromechanics modeling is of
tremendous help.
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The principal vehicle of estimation of the microcracked material properties
has been the study of the effect of crack systems in a material assumed to
be homogeneous. At the stage of damage initiation, the cracks may be
§ssumed to be very small and sparsely spaced, in which case their
interactions may be neglected. The same is perhaps true of the final stage
of damage in which the ligaments remaining between the microcracks are very
small compared to the size of the microcracks, i.e., the spacing of the
}igaments. However, for the intermediate stage of damage, which is of most
interest, interaction between cracks and crack tips is essential. Due to
complexity of the problem, some zpproximate but effective methods have been
proposed; e.g., Collins (1962); Nroz (1966); Gross (1982); Chudnovsky et al.
(1983); Horii et al. (1985); and Kachanov (1985, 1987). One important
aspect, however, has so far escaped attention. It is the fact that, for
many interacting crack problems, multiple solutions can be found and the
response path exhibits bifurcatiens. The present paper, in addition to
briefly reviewing some recent work on the relation of a microcrack array to
a nonlocal continuum model, attempts to shed light on the types of response
path bifurcation in a crack system and the method of determining the path
which will actually occur.

QUASI-PERIODIC ARRAY OF NONINTERACTING CRACKS AND NONLOCAL
CONTINUUM

As a simple model for damage, Bazant (1987a) analyzed a system of small and
sparse noninteracting penny-shaped cracks located on a cubic lattice of
spacing L, and loaded uniaxially in the direction normal to the crack planes
(Fig. 1). To obtain information on the nonlocal aspects, it was necessary
to consider changes from one crack plane to another, i.e., the crack array
is quasi-periodic, with the crack diameters slightly varying from one layer
to the next. The effective macrescopic secant compliance of this system
with growing cracks has been calculated explicitly and it has been possible
to satisfy exactly the conditions of continuum homogenization, consisting of
compatibi}ity of displacements and equality of work with the homogenizing
macroscopic continuum.

Xigg T~ - =
L
X; - -

Fig. 1 - Quasi-periodic cubic array of penny shaped
cracks analyzed by BaZant (1987a).
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The result turned out to be a nonlocal continuum formulation of nonlocal
damage type, in which only the cracking strains which cause damage are
nonlocal while the elastic response is local. Such a continuum, which had
previously been proposed on the basis of arguments of stability and
convergence (Pijaudier-Cabot et al., 1987; Ba%ant and Pijaudier-Cabot, 1987,
1988; Ba¥ant and Lin, 1987), was shown to be amenable to practical
application in large finite element systems.

Having a nonlocal continuum model, it is possible to study localization of
damage by continuum analysis, however, no information is obtained on the
micromechanics of such localizations. To do that, the micromechanics
analysis must take into account crack interactions such as the effect of the
extension of one crack on the stress intensity factor of another crack.

Such interactions generally give rise to multiple solutions, i.e., bifurca-
tions of the response path.

CRITERIA OF STABLE PATH AND STABLE STATE

The existing criteria of bifurcation in inelastic systems (Hill, 1958) are
limited to hardening plasticity. Moreover, they do not address the problem
of stability of the response path, i.e., do not indicate which path will
actualy occur after bifurcation. The existing criteria have been formulated
on the basis of the mathematical requirement of uniqueness, how-ever, a more
fundamental, physical approach is to use the second law of thermodynamics.

According to the second law, any system, elastic or inelastic, is stable if
the internal entropy increment of the system for any kinematically
admissible deviation from its initial state is negative. It is unstable if
at least one increment produces a positive internal entropy increment. This
approach was taken by Bazant (1987), and in a general form by BaZant (1976),
who showed that the internal entropy increment of any inelastic structure
(with or without softening or cracks) is expressed as:

1 1

1 1 .
BSine = - T MW - - o7 T 658 7% ¥ ? Ky Giq, 8, e

in which T = absolute temperature, AW = second order work, q. = discrete
displacements characterizing the state of the structure, f. = the associated
forces, and K. = the tangential stiffness matrix which, ifi inelastic
systems, depe% s on the direction vector v of loading in the n-dimensional
space of q; (i=1,...n). Eq. 1 is true For either isothermal or isentropic
conditions; in which case AW must, respectively, be regarded as the
Helmholtz free energy or the total energy of the structure-load system, and
K.. is expressed on the basis of either isothermal or isentropic material
properties. For plasticity, as well as for crack systems, the space of all
loading directions v is subdivided into sectors in which K,. is constant,
with discontinuous changes between the sectors. These sec%lrs arise in
plasticity from various combinations of loading and unloading in various
parts of the structure, and in crack systems they arise through combinations
of growing cracks, stationary open subcritical cracks, and closing cracks.

It can be shown that, in inelastic systems, both branches after the
bifurcation point may comsist of stable states; this is true for example for
Shanley’s column (Bazant, 1987b). The decision as to which loading path
will be followed after the bifurcation point cannot then be answered by the
analysis of stability of the states on the loading path. Rather, one must
invoke another form of the second law of thermodynamics, which dictates that
the path which will actually occur must maximize the increment of internal
entropy produced along that path.
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Labeling paths n = 1,2...n by superscript (n), the internal entropy
increments for equilibrium movements along the path can be expressed, for
displacement control (prescribed 6qi), as follows:

Asiﬁi - - o™ - % . 5fi(“)5qi = = %_T z j: Kij(z(n))sqisqj 2
and for load control (prescribed 6fi), as follows:

as(®) - L o Lo Z oty 5, = Lo 2 3\: Ky (Z(“))sqi(“)sqj(“) (3)
(Bazant 1987b). The path which actually occurs is that for which

555me = (o) @

where comparisons are now made only among all the possible equilibrium paths
emanating from the same bifurcation point, and not among all possible
deviations 6q. from the initial equilibrium state, as is the case for the
concept of stability of state. From Eqs. 2 and 3 it follows that

AW(n) = Min for displacement control
(n) (5)
AW = Max for load control

Application to geometrically perfect columns made of a hardened
elastoplastic material shows that they are stable up to the reduced modulus
load of Engesser and von Karman, but must start to deflect already at
Shanley'’s tangent modulus load. For the purpose of application to inter-
acting cracks. it can be further shown

™ o p LM 5 (M) gy (6)
v

in which V = volume of the body, and Ag(n) and Aﬁ(n) are the increments of
the stress and strain tensors along the loading path.

PATH OF PROPAGATION OF INTERACTING CRACK SYSTEMS

We suppose that the microcracks follow linear elastic fracture mechanics.
The second-order incremental work AW can then be easily determined by
elastic finite element analysis. For those situations for which the
dependence of the stress intensity factors on the crack lengths can be found
in handbooks, finite element analysis is unnecessary, as shown by BaZant
(1987c; also see Appendix). Squaring the stress intensity factor yields the
energy release rate of each crack tip, integration along the crack length
then yields the total energy release, and its differentiation with respect
to the applied load then yields, according to Castigliano’s theorem, the
additional displacement due to cracks, which may then be used to evaluate
AW.

Figures 2-4 show the results for some elementary cases with two interacting
crack tips. Initially the system is symmetric and the stress intensity
factors at the crack tips are equal to the fracture toughness K _(K,=K,=K ).
The stress intensity factors used in Fig. 2 were obtained from Murakami'’s
handbook (1987). However, for Figs. 3-4 they were obtained using finite
elements. As the basic path (n = 1) we consider the symmetric crack
propagation with equal crack extensions (8a1=6a >0 and 6K,=6K,=0). The
bifurcated path (n = 2) corresponds to one crac% growing whilé the other is
stationary and its stress intensity factor drops below the critical value
(6a1>0,6a =0,and 6K,=0,6K,<0). The third path (n=3) is the unloading path

(8a1=6a2= ,and 6K1-6K2<0 . In most cases the states on the symmetric

response path are unstable ( AW<O for some admissible deviations from the
initial state). However, if the displacement is controlled such that
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Fig. 2 - Stable (solid curve) and unstable (dashed_
curve) response path of initially symmetric
center crack in a tensioned strip.
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positive deviations are prevented, then the state could be stable. Figure 5
shows the variation of AW as a function of Su/b and 68, where §u = average
displacement variation due to the crack extension and 6§ = rotation

variation due to the crack extension (Fig. 4a) Denoting ém and §f as the

corresponding moment and force variations for §6 and éu respectively, we
therefore have

MW = %W = —1- smés + - sfsu (7

The equilibrum paths for §m=0 are shown in Figs. 4b and 5 and are labeled as
1,2, and 3. Depending on the control variable, as indicated in Eq. 5, one of
the paths will occur; it is called the stable path. Table 1 shows the stable
path for the example presented in Fig. 4. Figure 5b shows that a, = 0.44 is
the critical state since for §u = O the value of AW is O. Furthermore, Fig.
5a shows that for a, = 0.20 the state is stable (AW > 0). On the other
hand, for ay = 0.767in Fig. 5c the state is unstable (AW < 0).

Table 1. - Stale Paths in Fig. 4b

Initial Crack Type of Control Stable path

§q. >0 2
ag < 0.44 8q; < 0 3
s >0 *
§s <0 3

*No equilibrium path (none is stable)

Similar results have been obtained for other crack systems, including cracks
on parallel planes in strips or a space, as in Fig. 1. It transpires that
while the symmetric crack states exemplified in Figs. 2-4 are stable, under
displacement control conditions, the loading path which leads to them is
unstable. The states on the unstable path cannot be obtained in a
continuous loading process. They can only arise by some other means. It
seems that stability of the crack path generally requires localization of
crack systems into a single crack with a single crack tip; a row of cracks
on a line, or multiple rows of cracks, apparently cannot arise on a stable
loading path. If this conclusion is generally true, it would force us to
revise the approach to micromechanics of damage.

Multiple cracks on a row and multiple rows of cracks no doubt exist in real
materials, as evident from various optical observations as well as
measurements of the locations of sound emissions. It seems necessary to
conclude that such situations camot be adequately modeled as cracks
behaving according to linear elastic fracture mechanics if a homogeneous
continuum is assumed. It might be necessary to include in the analysis of
microcrack systems material inhomogeneties (e.g., aggregate pieces whose
elastic properties differ from the matrix), and take into account residual
stresses due to shrinkage or thermal effects. In this regard, it will be
also necessary to clarify physically why systems of symmetric or periodic
cracks can apparently grow in a stable fashion in real materials.

CONCLUSION

In the analysis of interacting crick systems, it is important to distinguish
between stable states and stable response path. A path consisting of stable
states need not be a stable path, and if so it cannot occur in a continuous
loading process. The criteria of stable state and stable path can be based
on the second law of thermodynamics. These criteria can be reduced to
maximization or minimization of the second-order work done on the structure.
Numerical studies reveal that various symmetric crack systems which are
stable cannot be reached along a stable path. This might require broadening
the scope of micromechanics analysis of damage by including on the micro-
level consideration of material inhomogeneties, residual stresses and
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Fig. 5 - Surfaces of second order work (negative
internal entropy increment) for initially.
symmetric edge cracks in a tensioned plate,
corresponding to Fig. &4 for: (a) ay = 0.20,
(b) ay = 0.44, and (c) ay = 0.76.
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existence of cohesive zones at crack tips. However, this does not
necessarily require abandoning linear elastic fracture mechanics for the
modeling of the microcracks, even though it is certainly inapplicabale on
the macrocrack level.
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APPENDIX

Calculation of Displacement Duie to Cracks from the Stress Intensity Factor

Based on linear elastic fracture mechanics, the stress intensity factor KI
can be expressed as K, = a/b’ f(ay, a,), where a, = al/b, a, = a /b, and
f(a,, a2) is a nondiménsional fuiictién which depends on thé geofietry of the
speCimefi. The strain energy due to the crack can then be calculated by:

K, 202
Ue = J: & P = T g(eg o)) o

where g(al, a2) - J:: fz(al, 02) da and a = o + a,.

As used by Bafant (1987c), the load-point displacement due to the cracks is
according to Castigliano’s theorem,

au

c 20b

Ve “bao = E 8(ep. @) e
Under the assumption that the fracture toughness KI is a constant, crack
propagation occurs when at least one stress inten51€y factor at the crack
tip reaches a value equal to l<E . Thus, the nondimensional stress and
displacement for crack propagation are given by the following expressions:

Ev
afb 1 1 c
S = - : q. =3 -sg(a,a) (10)
KIC f(&l, 02) c 2 ,Ic jb—v 1 2
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