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INTRODUCTION

A careful study of any book dealing with linear fracture mechanics (Broek) shows
that much experimental data cannot be explained satisfactory in such a restricted
theoretical framework. Among these data are two important phenomena: the
stable growth of mode I cracks under monotonic loading and the thickness effect.
Considering fracture to be closely related to the constitutive equations chosen for
the material and given that elasticity is unable to explain either of the two above
ﬁhenomena, we undertook this study by means of plasticity (Prager's linear

inematic hardening rule). The main advantage of such a law is its simplicity. It
depends on only two parameters: a yield stress o, and a hardening ratioa = E;/E.
This rule has the advantage of allowing a smooth transition from purely plastic
behavior (a = 0) to purely elastic behavior a = 1). This is important since a
fracture concept in elastoplasticity is not valid unless it can ultimately account for
what occurs in material with very low ductility, i.e. brittle fracture.

PREVIOUS RESULTS

As the analytical study of a crack tip neighborhood is very complex in the
elastoplastic case, we investigated the problem through numerical simulation.
Such a method is not always simple due to the careful precautions that have to be
taken in interpreting the results obtained.

First, we studied the case of a steadily growing crack, focusing on the dissipated
energies that can be computed (Anquez, 1985). It appears that in a forced crack
length increment Aa, under constant external loading, the overall dissipated
energy ADp is the sum of a decohesion energy AD,; located at the crack tip and a
dissipated plastic bulk energy AD,. Approximations of the rates of dissipated
energies are obtained by dividing the energy increments by Aa:

(1)
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In this equation, superscript Aa points out the fact that each term is mesh size
dependent. A study of numerical convergence shows that as Aa approaches zero,
GR4? approaches a value close to ‘(Q, which could be obtained in the pure elasticity
case (K2 = E&@ in the plane stress case) and G¢/** approaches zero. This brings us
back to Rice's paradox: in elastoplasticity, all the energy is dissipated in plasticity
during crack growth.
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elements near the crack tip depended on one parameter only, at any step, (i.e. all
mechanical quantities are interrelated), we undertook simulations by releasing the
tip node whenever a chosen characteristic parameter reached a critical valuc
defined a priori. Each crack length increment Ag required first a load increment -
characterized for example by AK- during which the bulk plastic ADy was
dissipated, then a tip node release when the characteristic parameter reached its
critical value; during this last process, the energy ADy was dissipated.

The essential result obtained by means of numerical simulations was that the sum

\Dy + ADp divided by Aa remained quasi-constant at any step during a
mmulatiop. This result isconfirmed by a convergence study. So, going to the limit,
We can write:

an 4K A  4p (2)
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We must point out here that such a result comes from numerical analysis and that

1t could not be easily established by thermodynamies.

Careful analysis of the numerical results obtained during simulation allows us to
write (when small scale yielding hypotheses are satisfied) (Anquez, 1985):
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where y and I are functions of the hardening ratio a. When a = 0 (perfect
plasticity),y = 1 and I = Iy so wehave:

When a approaches 1 (pure elasticity), Y approaches 0.5 and I" approaches 0.0, so we
obtain the following well-known result: K = K,

These results were obtained in the plane stress case. Similar results are also
obtained in the plane strain case.

The question of the thickness effect then arises: if a given critical value G is
assumed in the plane strain case, what is the value to be taken in the plane stress
case? Certainly not the same because, as mentioned above, in the steady state case,
G is near g which could be calculated in pure elasticity. So taking G, as a material
parameter will not give any thickness effect. We therefore must investigate in
another direction.

THICKNESS EFFECT: A SUGGESTION
The starting point of our argument js the following: if a crack can grow in plasticity

without any recourse to decohesion, this is because its growth is due only to the
accumulation of infinitesimal plasticslips at the tip.
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ip li ich can be found by
S i ion has to be devoted to the slip lines whic )
Zr:;:?ﬁzl}zil?ﬁeaffsgstlggl maximum plastic shear strain (bisectors of the main axes of

the incremental plastic strain tensor).
As an example, we present the slip lines obtained for the same a value (a = 0.1)

i i k (Fig. 1) and for
; lue, in the plane stress case for a stationary crac i
::?c;hdeils; rgr;?)vjfi;llz ::acllr(l(Fig%), and in the plane strain case for a stationary crack

{Fig. 3) and for a steadily growing crack (Fig. 4).
Three zones can be distinguished in these above cases:

Zone 1, located ahead of the crack, where the Tlipflir;epsrg)c:irrxrcl);;tgi;c}:/iheTi:]riz;czl;:ep’
’ ck propagation axis at an angle of a : n/4. Th
al:ntoggoff?l;?fvzr:ize Fncx?eaies as a decreases in plane stress, is negligible in plane

strain.
Zone 2, where the slip lines reach the crack tip forming an angle less than or equal
lu‘n/z with respect to the crack propagation axis.

- Zone 3 where the slip lines reach the crack tip from behind, forming an angle
préater than n/2 with respect to the crack propagation axis.

i i kes place all along the
S i t the tip (which result from what ta t
/.\b onl}c’)rfgfn;];{)isp ?ine) whigh are at an angle less than or _equal to n/22can combine
t::gfosguce a crack tip advance, we concentrated our attention on zone 2.
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Fig. 1 — Plane stress. Stationary crack. Slip line field at K D
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Crack

Fig. 3 — Plane stnin. S tationary crack. Slip line field at K, D
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Crack

Fig. 4 — Plane strain. Steadily growing crack. Slip line field at K p,.

A good measure of the plastic activity in this zone, which causes the slip
concentration at the tip, is the plastic energy increment Ad dissipated either
during the load increment AK, the crack being fixed, or during a crack propagation
increment Aa, the load being fixed.

The last step is to determine as well as possible the spatial limits of zone 2 and to
calculate the ratio n of Ad (increment of energy dissipated in this zone) to AD
(increment of bulk energy dissipated) in the two following cases: loading without
crack growth and crack growth under constant load (in plane stress and in plane
strain, for different values of the hardening ratio a).

The results obtained are shown in Fig. 5 and Fig. 6.
The essential feature observed is that the ratios ncp and npp have almost the same
value in the stationary and the steady state case. So we can write:

ad an ﬂ abD

K"K w "a

Multiplying equation (2) by 1) then gives:
T SRR
dK da da € ¢
So there exists a critical g. defined in zone 2. This energy release rate is more
meaningful than G, as far as the crack propagation is concerned.

We now assume that this value is intrinsic to the material; so we decide that g is
the same in plane strain and in plane stress.
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Fig. 5 — Phne stress. Evolution of the ratio n of the
useful plastc energy increment to the overall plastic
energy versrs J o« (o= E/E being the hardening ratio).
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Fig. 6 — Plane strain. Evolution of n versus J a.

Given this, suppose that we know K| for a given material. Then:
2
(? pp_ A v )Kz
c E IC
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Having pointed out that G and @} have approximately the same value, we could

write:

2
1 —=v9
GDP:_KIZ
€ E c

Knowing the material, we can find its hardening ratio a and consequently (see Fig.
6) its appropriate n value in plane strain. So:

2
B GPP ~ 1 —=v9)
.= Npp Y. Mpp — 1y

Then to determine K., whose ratio to K, is a characteristic of the thickness effect,
we write:

And finally:

The evolution of the ratio K| /K], versus a (Fig. 7) shows that the theory suggested
seems to be able to properly describe the thickness effect.
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Fig. 7 — Thickness effect versus J a.
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CONCLUSION

The final result presented in Fig. 7 is encouraging but requires further
convergence study.

The first interest of &c is its physical meaning which allows us to consider it as
intrinsic to the material (and consequently usable in a larger framework than
small scale yielding).

The second interest of &c is that it is independent of the mesh size, provided the
finite element mesh is sufficiently refined.

Finally, the use of &c allows us to use the same "simple"” theory to consider stable
crack growth, the thickness effect and also fatigue crack growth, since we have
shown (Anquez, 1988) that in this last case, an energy balance similar to (2) can be
found, as well as perhaps even crack initiation (through analysis of microcrack
growth as suggested by Griffithin the framework of elasticity).
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