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Summary

This paper provides an overview of some of the recent (1984-1988) developments
in analytical/computational methods in the mechanics of fracture: (i) solution meth-
ods for the traction boundary integral equations for arbitrary-shaped cracks embedded
in infinite solids, the crack-faces being subjected to arbitrary tractions; (ii) analyt-
ical solutions for elliptical or circular cracks embedded in isotropic or transversely
isotropic solids (the crack-plane being at an arbitrary angle to the axis of transverse
isotropy), with crack-faces being subjected to arbitrary tractions; (iii) finite-element
or boundary-element alternating methods for two-dimensional crack-problems, as well
as for three-dimensional problems of surface flaws in finite-dimensional structures of
linear elastic solids; (iv) domain-integral methods in elastic-plastic or inelastic crack
mechanics; and (v) methods for generation of weight-functions in 2 and 3-D linear
elastic crack problems.

Introduction

The starting point for this overview is the monograph on ”Computational Methods
in the Mechanics of Fracture” edited by Atluri (1986), with contributions by several
noted researchers. The various articles in that monograph were prepared by individual
authors in the 1984-85 time frame, with the material being current mostly as of 1984.
In the present paper, some recent advances in computational fracture mechanics in the
intervening years are summarized. The coverage of topics is limited to those listed
in the ”Summary” above; and furthermore the scope of the article is limited by the
authors’ own interests. Furthermore, space limitations have precluded the treatment of
computational methods in viscoplastic dynamic crack propagation analysis, a subject
of current interest in general, as well as to the authors.

In each of the topics listed in the ”Summary”, a reasonably self-contained account
of the generic issues, and the progress made in addressing them, is provided below.
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1 Embedded Cracks in an Infinite Linear Elastic
Solid '

An important class of problems in kydraulic fracturing and in earth-quake control, in-
volves the analysis of flat cracks of arbitrary shapes (rectangular, elliptical, and circular,
being special cases), embedded in a linear elastic solid of infinite dimensions. Here, the
generic problem of interest is that of arbitrary normal as well as shear tractions on
the crack-faces themselves. Let the crack-surfaces (upper and lower) be in the planes
€3 = %0, in a coordinate system with s normal to the plane of the crack, and the
boundary of the crack being described by an arbitrary curve in the ¢;, ¢, plane. The
tractions on the crack faces are t; and t7, respectively (3 the opening mode and Loy
a = 1,2 the shear modes), such that t; +1t; =0. Let A be the area of the crack.

The problem for an arbitrary-sheped crack in an infinite solid is most conveniently
formulated in the form of traction-boundary-integral equations [Cruse (1975); Bui
(1977); Weaver (1977); Clifton and Abou-Sayed (1981); Ioakimidis (1982)]. However,
the numerical solution of these integral equations has, until recently, not been very
satisfactory. Some important contributions to resolve these numerical difficulties have
been made recently [Polch, Cruse, ard Huang (1987); Gu and Yew (1988); and Okada,
Rajiyah, and Atluri (1988)]. A brief discussion of this state-of-the-science is given
below.

The well-known integral representation for displacements in a 3-D linear elastic solid
[see Cruse (1969), for instance] is:

wil®) = [ [6:(605(62) — u,() (€, 2)) dA(€) M

where z is a point inside the 3-D domain, and ¢ is a point at the boundary on,
and dA(¢) is a differential area in 9N centered at §. In the case of the infinite solid
with a crack, with the only applied tractions being on the crack faces, it is seen that
90 = A* + A~ where (+) and (=) refer to the upper and lower sides of the crack,
respectively. In (1), uj; and t}; are the displacement and traction kernels respectively,
from the fundamental solution [Kelvin’s| of the problem of a point load in an infinite
solid [Cruse (1969)]. When (1) is differentiated with respect to Zm, one has:

wim(z) = [ [4(6)4,0(62) = us(E)t5m(€,2)] dA(8) 2)

where ()., = 3( )/8z,. When z - ¢ (where ¢ is on 00), Eq. (2) involves a hyper
singular kernel t; . (€,z) (in the limitas z — £). This is the major source of numerical
difficulties in the traction boundary integral equation method.

Since t} + t; = 0 on the crack faces A*, and also since the kernels uj; and t}; have
the properties u:f = uj;; and t:."]-+ = -t;7, Weaver (1977) has noted that Eq. (1) and

Eq. (2) may be simplified as:

ui(@) =~ [ duy(€)e5 (€,2) da(e) (%)

and

wim(z) = = [ Ay ()t a(62) da(e) @)
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where Au; = u} — uj. Also, since 9(t};)/0zm = —0(t;)/Om, as noted by Weaver
(1977), one may write (4) as:

otyf
wimlz) = + [, Aus(€) 5 dAE)
- _/A+ et A0

since Au; is zero at A*. The limit as £ — £ can be taken in (5b) in t.he Cauchy pr.in—
cipal va.the sense. By using the (stress)-(displacement-gradient) r.elatlons,'and. takmgl
the limit as z falls on At, Weaver (1977) has derived the following traction integra

equations on the crack-face [z at A* and £ at A*]

b 8ot L aald) (6)
A

oss(z)=4————-———7r(1_y) +£’; 8Es

S ) L & ity
os(z) = 4n(1 —v) Ja+ |20z, ¢

(o) (28n_o0w) 2 | aace (™)

r? 3¢, 0& ) Oz

= £ 1 8r gnup
o13(2) = 4r(1 —v) Ja+ [r?2 0z 0&p

(1-v) 6Auz_6Au1)_3L]dA (8)
i r2 ( I3} &, ) Oz, (€)

here r? = (z; — &) + (z2 — &)*.
" eWhen 053(1:!:), jl = 1,2,3 are specified on the crack-faces, Egs. (6), (7), (8) repre-

sent singular integral equations of the first-kind for the gradients of the+crack—surface
i i = J o= t the crack-surface, A™.

displacements, i.e., Ou; /3¢ [i = 1,2,3; a =1,2] a

pA direct m;mer’ical attack on Egs. (6-8) was attempted by Polch, Cruse, and Hugng
(1987). The germane issues in such a numerical method are: (i) the presence of .denva-
tives of the trial functions u; in &, directions at A*; (ii) the modeling of the singular
behaviour of the trial field for the gradients du;/d¢, [which may vary_ as \/1/R where
R is the distance normal to the crack-front, in the crack-plane]; and (iii) the treatment

of the singular kernels,

r

1 0r -i [l] )
7‘_2 5;; - 61,@

i imit as z5 — 5.

" t?: ltl}rlzltdirecf nunglferical treatment of Polch, Cruse and Huang (1987),( a pro.po‘r.
handling of the principal values of integrals involving the kernels gf the type (.)):e(}l}l}lr( s
a continuous interpolation of direct trial functions for the 6 gradzgnts Ujq at AT, hus,
by discretizing A* into finite elements, these authors introd}lce C” type sha;.)ebf]uncttll(;r;s
directly for Au;, at AT. However, if Au;, is viewed as an mdeper}dent varla' 'e a S
at each node at AT there are 6 unknown variables, and only 3 given quantltle‘s (0:3)-
To overcome this inconsistency, these authors introduce two sets of shape functions for

1925



Au;.: (i . :
no({é); gzdo?i?)a:nl?jgpendsnt Coolr.lterpolation in terms of nodal values of Au; (6 per
of Ao B i) f(:‘pen er}it.; C 1nterp?lation only for Au; (in terms of nod‘e:lx values
Howerne. oot derivedo%‘n :;; h ich th.e d.erlv.atives Au;, are derived by differentiation
e elem;:ts crived ﬁn is fashion is discontinuous at inter-element boundaries in.
anid those for o BeRE (le/ \c/rj%ck fr(.mt., the shape functions for u; have /R variation
o hos sought‘,:o e € ) va.nat;x.on. The six independent values of Au,; , at each’
e re a.te(il.to the 3 mdepe.ndent values of Au; at each node',athrough
o e (Whg;}lle,iswd(:fciiezeiksstt}:) I(Iil.lfl;imize tl';e integral of square of the error
; ; I e difference between Au; i
(f)rfor(r:& Zh.e )tv«i/o {nf;erpolatl.on sc-hemes' described above), with respecliatzatl}l:: Sniztaelrf/n llned
i,a) I interpolation (i). With the nodal values of Awu; alone as the ulti;zf:

lndep(mdent Vatlables the usual bounda.ly eleme t (:()ll()(:atl()n pr 0(:edule can continue.
’
If mtelpola.tlun (l) Is written as: '

Auio(€) =M(&)Aul,; Eear (10)

wherej =1,... At; M’ m ‘
s L writte: ::e noc.ies at A*;and M (£) are the usual finite element (local) shape
equivalent glebally valid functions; and Au’_ are nodal values of
i,

Au;, at the node j
i J(1,...m). When (10) is i ;
integral that arises, is ’of e )form: (10) is introduced in (6-8), a generic singular

jrm 1 OF
fA+M (6735, 44(6) (11)
= 7 1 af(f,
/nM © =g az——;) dA(€) (12)

where T'; i

. lrlzua,l f1isni:«;epaitch of elements over the node j, and (12) follows from (11) since in
he usu e element sense, M’ ({) is non-zero over only I';. For an arbit h

patch I';, the integral (12) may be written as equal to: ’ reryshaped

M (€)- Mi(z) ar (¢,
-/r,' ri(z, £) g ;i:) dA(¢)

ﬁar(r, z)
v, (2,6 oz, A (13)

+Mj[z)

In the limi : .
is of eol(r:l)lt a'SfI:: —}til’ ¥ the first term in the integral (13), the quantity M7 (¢) — M (z)
numerica”. Thus e 1ntegra! of the first term is O(1/r), which can be evaluated
" z/ 'e se'cond term in (13) contains a non-integrable singularity, but b
ed to a line integral through the divergence theorem: A can be

/iﬁr_dA d /1 1
r,r?dzs A,-&T;,(?) dA:“/ar_nﬁ;df (14)

where T'; i i

mhere pla;esAtile:rildr\;leel.)ou}rlldln.g T a‘nd ng are components of a unit normal to o'

il i in, and (1;5t eddlfferer}tlal arc-length along 9I';. Recall that the specia]l

peatment s in q P ! }3 and (14) is needfed when the source point z is inside the

straight]ﬁne Segmgl;ts o’;h et al.'[1987j sgbdlvide 9T into a large number (up to 100)

SoE Ine e - Thus, .whlle aprecise convergence study of the various numerical
ons is lacking, it is neveriheless commendable that the rather complicated
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procedures employed have been shown to work in a few simple buried crack problems

[Polch et al. (1987)].

A remarkable simplification results if one drops the idea of satisfying the boundary-
integral equation at a few points at A* in the sense of collocation, and use, instead, a
direct weak solution of Egs. (6-8). This procedure, which mitigates the difficulties with
singular integrals, has been suggested and numerically implemented by Gu and Yew
(1088). The penalty, however, is that double integrals over A* should be evaluated; and
the procedure is inherently limited to the case of an infinite solid with an embedded
erack with the only applied tractions being on the crack-faces. Consider, for instance,
the mode I problem of Eq. (6). Let Aus be the trial solution that is assumed at A*.
Rather than satisfying (6) through point-collocation, Gu and Yew (1988) try to satisfy
it in a weak (or integrated average) sense, by introducing test functions Avs at A*.

Thus, the weak form of (6) becomes:
dr dAuz 1

/A , 0%3(2)Avs(2) dA(2) = 4—“—(1“_—1/) /A . [ /A b dA(E)] Avy(z) dA(z)

(15)

The test function Awvs is chosen to have the same nature as the trial function Aus, i.e.,
it is continuous in A*, and vanishes at 9A*. The double-integral on the right-hand-side

of (15) involves the generic term (by interchanging the order of integration):

L. Avs(z)%(z—;f—)rl—z da@) =, Avs(z)a—% [le's_)] dA(z) (16)

By a careful analysis of the singular integral on the r.hs. of (16), Gu and Yew (1988)

show that:

L_98us(2) 4z (17)

_/A+ Avs(x)(;% [;(zl_f)] dA(z) = /A+ Wt P

Thus, the differentiation of the singular term (1/r) has been transferred to the test
function Avs. The use of (16) and (17) in (15) leads to:

_ “ 1 JAvsz 9Aus
/A+ oss(2)Avs(2) dA(=) = i) /A+ /A+ r(z,€) 0z, 0

The inner-integral on the right hand side of (18) is an improper integral with a remov-
able singularity. When transformed to polar coordinates and the origin of coordinates
is placed at the singular point, this inner integral is simply transformed to a regular
integral — and thus is easily amenable to a numerical integration.

For analyzing arbitrary-shaped, embedded, or surface cracks in finite-sized struc-
tural components, the Schwartz-Neumann alternating method, based on the principle
of linear superposition, may be used. Two generic solutions are needed in this alter-
nating technique: (i) a boundary-element method for the stress analysis of the finite
structure subjected to the given external loading, but without the crack; (ii) the solution
for embedded crack in an infinite solid, the crack faces being subjected to tractions that.
are equal and opposite to those at the location of the crack in an otherwise uncracked
structure, as determined from solution (i). The solution (ii) would lead to residual
tractions at the location of the finite boundaries of the given structure, in an otherwise
infinite solid. It is thus seen that an iterative use of solutions (i) and (ii) alternatively,

leads, through a linear superposition principle, to the desired solution.

dA(¢) dA(=)  (18)
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Fut geaseating solutions (1) in the above sketched alternating method, the traction
BEE feesmulation of Eqga, (6, 7, 8) are useful. However, for the solution of problem (i),
5% 44sstion BLE. method based on equation (2) is not convenient, as it leads to hyper-
singular integrals at the boundary. It is in this context that the recent work by Okada,
Hajiyahi, and Atluri (1988a,b), in developing new integral equations for displacement-
gradients directly, is useful. For linear elasticity, these authors have developed (1988a)
the following representation directly for Uik

wis(a) = [ [1(€) Buipana(€)uies(z, €)
~t5(E150a (2, €) — upa(E)t5e(z, €)] dA(€) (19)

Unlike the usual representation given in Eq. (2), the new representation in (19) in-
volves the kernels u,; and tpe Which have the same order of singularity (which is also
less than the order of singularity in tim in Eq. (2)) and are quite tractable from a
numerical point of view. Okada, Rajiyah, and Atluri (1988a) have demonstrated the
superior accuracy in the computed stresses, as well as the ease of computation itself,
using the displacement gradient representation in Eq. (19). Similar velocity-gradient
representations for small as well as large-strain elasto-plasticity were given in Okada,
Rajiyah, and Atluri (1987), and implemented by them [Okada et al. (1988b)].

Another noteworthy development of integral equation methods of relevance in frac-
ture mechanics is due to Benitez and Rosakis (1988). It is a specialization of the
integral equation method for 3-D elasticity, for problems involving cylindrical regions
i.e., bodies with a generator and identical cross-section at any location along the gen-
erator. This formulation uses the fundamental solution for an infinite elastic plate of
uniform thickness. They show that the integral identities, corresponding to the class of
problems which involve cylindrical regions, and with the cross-sections at the ends of
the generator being traction-free, contain only integrals evaluated over the lateral sur-
faces of the cylindrical region. For instance in the analysis of surface cracks or through
cracks in plates of uniform thickness, only the lateral surfaces of the cylindrical region
need be discretized through boundary elements, with no elements being needed for the
parallel end cross-sections.

2 Analytical Solutions for Elliptical or Circular
Cracks in Isotropic or Transversely Isotropic Solids
with Arbitrary Crack-Face Tractions

In practice, the actual flaws in three-dimensional structural components are often ap-
proximated by elliptical cracks. For this reason, the problem of an embedded elliptical
crack in an infinite solid has been the focus of a considerable number of studies.
Vijayakumar and Atluri (1981) have presented a general solution procedure for an
embedded elliptical crack in an isotropic infinite solid, subject to arbitrary crack-face
tractions. Later, Nishioka and Atluri (1983) have refined and completed this solution,
deriving (i) alternative non-singular forms for linear algebraic equations relating crack-
face tractions and potential functions, (ii) a general procedure for the evaluation of
the required elliptic integrals, and (iii) a systematic procedure for the evaluation of
the partial derivatives of the potential functions. These derivations made it possible
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to extract the analytical close-form solution for any polynomial order of frack—face
tractions. For later convenience, we cite this general solution altoget}.ler (Vijaykumar
and Atluri, Nishioka and Atluri) as VNA solution. The VNA s?lutlon repres(-:‘nts a;
generalization, hitherto thought to be unachievable, of the potential representation o

Segedin (1967) and Shah and Kobayashi (1971). ‘ )
gIn th£ following, we present a brief summary of the VNA solution. Further details

of the VNA solution can be found in the cited original papers.

2.1 The VNA Solution (An Elliptical Crack in an Isotropic
Solid)

Suppose that z, and z; are Cartesian coordinates in the plane of the elliptical crack
and z3 is normal to the crack-plane such that:

(z1/@1)* + (z2/a2) = 1, a; > ap (20)

describes the border of the elliptical crack of aspect ratio (a;/a;). The necessary

ellipsoidal coordinates ¢, (o = 1,2,3) are defined as the roots of the cubic equation
2 2 12)
— 1 — Z1 _ T3 _ (=) = 0 (21)
el =1 (ﬁ+s> (d+s) (s

2
00> E>0> &> —a) > & > —a]

so that the interior of the ellipse is given by &3 = 0 and its. boundary by &; = & = 0.
Let the tractions along the crack-surface be expressed in the form

where

1 1 M m = 5 . <
dB=T"% 5D Al mim g (e =1,2,3) (22)

i=0 ;=0 m=0 n=0

so that the values of (7,7) specify the symmetries of the load with respect to the a?(els
of the ellipse. M is an arbitrary integer which is related to the order of the pol)fnomla :
The solution corresponding to the load expressed by Eq. (22) can be assumed in terms

of the potential functions

1 1

M k.
Jo = Z Z Z Z Cg,ﬂz,zek- 2044,20+5)

1=0 =0 k=0 ¢=0

(@=1,2,3) (23)

where 62k+i+j ds

_ / [w(s)]2k+x+j+l
Fak-zerines; = ———'—axil,k,uﬁalggﬂ & 20)

(24)

and Q(s) = s(s + a?)(s + a}). The components of displacement v, and stress o;; in

terms of f, (a = 1,2,3) are given by

uy = (1=2v)(fi3+ f31) —(3—4u)f1,3+z3(V-?),1
wy = (1-20)(fos + fa2) — (3 —4v)fos +z3(V - f)iz
us = —(1=20)(fir+ fa2) —2(1 —v)fazs+z3(V-f)s (25)
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P = fsn+ 20fs 00 — 2f131 — 20 fz3, + z3(V - }) u]
033 = 2u[fs20+ 20fsy; — 2f232 — 20 131 + 25(V - ]) 22]
o1z = 2ul(1=20)fs12 = (1= v)(fras + fas) + 25(V - J) 3]
Oss = 24[—fsss+13(V - 7).s] |
os1 = 2u[—(1-— V)fi,ss + v(fran + fom) + z3(V - })'13]
052 = 2u[—(1 = v)foos + v(fr1s + f22) + 25(V - F) 2] (25)
and
V.}' =fir+ fa2+ fa3 (27)

wheBre © and u are 'the shear modulus and Poisson’s ratio
Y successive differentiation, it can be shown from (24) that, since w(&5) =0
] 3) — Y,

oo G+t k+et+1 d
Fy = \\s:/mk 2, am ds
& Ozfary [Q(s)2 T Uy, %9517 lwk+l+1W_ (28)

wherein (2k — 2¢ +4) and (2¢ + j)
eren (2 ) (2 + ) in Eq. (24) are replaced by k and ¢ in the above

k1=k, £1=£, m; =0
In (2 iti
(28) we have used the additional notation that 87 implies the jth partial derivative

I peCt I, m l ly e - artia de1 vatives of I with IespeCt to
Wlth €es to . Si llar th ﬁl'st Ol'del' t
( ) ’ parti 1 1 ke

Fup= ["ohiopopigpren__ds
e 1929% [Q(s)]l/z (29)
where
ki=k+6bip, € =0+6y, my = b5
andI b1p, etc., are the well-known Kronecker deltas.
n the case of the second- and third-order partial derivatives, we derive:
Fkt,ﬁ—y — /m a{na;la;nxwh—l-{»l ds Fo
. _E[Q(s)]l/z + Freg (30)
where
ki & m
F,ﬁ’m,,:(k-i-l-{-l T X S ™y
R Al G IO L W (31)
ki =k+ b5+ 6, 0 =L+ 85+ 63, m,y = 835 + 63, (32)
_Ow _ 2
Pa = E = _2/(an + S)v (a = 152’3) (33)
in which a3 = 0, and
Frrpgs = /oo af:aglamwkﬂﬂ ds aFI?lﬂv 0
A A IO + 3z, T C (34)
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where
(k+£+1)'{Q(s)]l/z ky &y . my kb, my
T
G E)Es— &) Pl s
ko(ko - 1) zo(eo = 1) mo(mo e 1)
2p17} 2pyx3 2p3z] a=bs

GO

koz k+61ﬁ+611; €0= e+6zp+627; mo = 63‘;4‘63.,
ky = ko + 6153 £y = €y + b5 my = mg + 35 (35)

A systematic procedure for the evaluation of the partial derivatives of Fiyp, in (34)
is given in Nishioka and Atluri (1983a). It is noted that these derivatives are needed
(i) in satisfying the boundary conditions on the crack-face and (ii) in evaluating the
far-field stresses in the solid containing the elliptical crack which is subject to arbitrary
tractions.
It is now seen from (28)-(34) that one needs to evaluate a generic integral of the
type: q
% ki oty qmy, k+e+1 S
/& L A TR (36)

To accomplish this, we expand Wkttt in terms of z2 and carry out the indicated

differentiations term by term. Thus, one obtains:

I YT NSRRIV Sl ) y S e
& QRO 4 ook 1)

(2p — 2q)! (2p — 2r)! (27)! zf”—z"_’”
(p—q! (g—7)! (! (2p—2¢— ki)'
IZq—Zr—tl IZr—ml
: (37)

2
* (2¢ —2r — £)! (2r — ml)!JP_q'q_"r(&)

where d
0 s
To-gaeitl) = ||

braarol&8) = [ T ey o(e + B (s + D) Q)

In general, the integral indicated in Eq. (38), for a given set of parameters p, ¢, 7,
can be evaluated in terms of incomplete elliptic integrals of the first and second kinds,
and Jacobian elliptic functions. The derivation of the closed-form expressions involves
exorbitant work even for relatively lower-order components of J,_q,4-r, (see Shah and
Kobayashi, 1972). Therefore, the derivation of a systematic generic procedure for the
evaluation of the elliptic integrals Jy,_qq-r, was important in the development as well
as in the numerical implementation of the VNA solution. A procedure for this has been

developed by Nishioka and Atluri (1983a) and is summarized as follows.
Eq. (38) can be rewritten in terms of Jacobian elliptic functions, as:

(38)

A /l“ (sn?u)(nd* * u)(nc* u)du

Jo-gq-rr = “2p+1 o

ay

2

2p+1 Lpg-rr (39)
a;

Ml

where
sn’u; = a}/(al + &)
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Phe following identities for Jacobian elliptic functions are used:

¥
an'uy +oenfu = 14 k*sn’u + dn%u = 1

i 2
dn'u - ken*u = K'% k"sn’u + cn’u = dn’u
tnu = snu/cnu;

dcu = dnu/cny; cdu = cnu/dnu

ndu = 1/dnu; ncu = 1/cny; sdu = snu/dnu (40)
where
2
k* = (a] - a3)/a}; K? =1k (41)
By using integration by parts in (39), one sees that:
1 {(sn?*! 2r—1 29-2r—1
e “(Zr Yy (sn®*'u)(nc u) (nd 71y )@

+[22(—p tr=1)+2(p—q—r+2)k*Lpg_,,,
+k*(=2p+ 29— 3) Ly gy, 2} (42)

Thus, one needs the starting values of L

. pg-ro—1 aNd L, . .. . to ev:
lowest-order starting values are: et aluate Ly -, The

uy
— 2 =
L1 = /0 sn**und*unc™?u du
L ' sn?
— 2q -4
piai—2 —/ sn“’und*'unc
1 udu (43)

The above integrals can be reduced to the forms:

1 ’ (—=1)FtrH1g2(1=7) 5
B, = o SN N .
fe2p+2 ;Z:Og (p— 7)1 — 7)o Tag-5-v)
1 P2 (_1)j+'1+2k12(2—7) ]
LM'_2 _ p!2
L :Zo;; (P~ G2 — )yt 2= (44)
where
up
In= [ ndm
2 A nd™u du (45)
imsz = 2m(2 — k*) Ly + (1 — 2m) Iy — k%snujcnuynd?™+y,
@m + 1)k? el
For 2(p—j — ) < 0in (44), we find I_,,, = G2m, where
2 2m—
Gamsa = k*dn*™ 1y snujcne, + (1 —2m)k*Gap_y + 2m(2 — k?)G,y,,
. (2m+1) i ()

ThuS ﬁna.]ly we see that one ne
3 I eds the fO”OWl]’l start \4 [0 A €
g arting alues fi r evalua LINEG the

Iy = Go=F(uy) =u,
e (1/F*)[E(u1) — k*snuyedu]
G2 E(U]) (48)
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where F(u,) and E(u;) are incomplete elliptic integrals of the first and second kinds,
respectively.

Now, the boundary conditions on the crack-face (03« = 03,) can be expressed in
terms of the potential functions, as follows:
0
0':(’.3) =

0
o5

—2ufs3,33
—2p[(1 = V) fazs — ¥(f11a + fr2a) ] = 1,2 . (49)

in which the boundary condition for fs is uncoupled from f; and f,. However, if Egs.
(49) are used directly as in Vijaykumar and Atluri (1981), finite parts of the singular
terms in the equations relating the coefficients C of (23) to coefficients A of Eq. (22)
have to be considered. Alternative non-singular forms for the boundary conditions may
also be used. Since f, (@ = 1,2,3) are harmonic functions, it is seen that:

fa3s = —fau1 = fan («=1,2,3) (50)
Then, (492, b) can be rewritten as follows:
ald 2p(fsa1 + f3,22)

ol = 2u[(1 = V) (famr + fa22) + V(f11a + f220)] (51)

Substituting (22) and (23) into (51a, b), we obtain the following linear algebraic
equations, upon comparing coefficients of like powers in the polynomial series. The
relation between the parameters A and parameters C can be summarized in a matrix

{4y = (B] {c} (52)

N x1 NxN Nxl1
where N is the total number of coefficients A or C. For a complete polynomial expressed
by (22), the maximum degree of the polynomial M, and the number of coefficients N
can be expressed, respectively, as M, = 2M + 1 and N = (M + 1)(2M + 3) x 3.
For an incomplete polynomial, the maximum degree of polynomial and the number of
coefficients depend not only on the parameter M but also on the parameters 7 and J
in (22). Detailed expressions of the components of matrix [B] are given in Nishioka
and Atluri (1983a) for Mode I and mixed modes of II and II. A more convenient form
for the mixed modes of II and III also can be found in Simon, O’Donoghue and Atluri
(1987).

Once the coefficients C are determined by solving (52) for given loadings on the
crack surface, the stress-intensity factors corresponding to these loads are computed
from the following equation (Vijayakumar and Atluri, 1981).

For the Mode I problem,

form:

x \1/2 1 1 M k -
K = B <__) AVAS S SO S (—2) P (2k 4+ § + 1)
aaz i=0 j=0 k=0 ¢=0
1 (cos 8\ 2 [sing\ 2 (i
ol 53
" a1ag ( a ) ( as ) e o

where 8 is the elliptic angle and

A=alsin?0 ol cos? (54)
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Fiss ihe snvinesdomode problem of Modes II and III

/2
K =8 (L) *1/4L s
11 m P A P [Hiaz cos 0 + Ha, sin 0] (55)
1/2
K = 3§ ( m ) -1/4 (1-v) .
111 " d_laz A ﬁa,a; [H2az cos 8 — Hya, sin 0] (56)

in which

H = gzz D (=2)* % (2k iy 5+ 1)1

7=0 £=0

k=0
x (o8 BT (Sing) 24t (i.4)
a s Clilee (57)

1 1 M &k
H, = ZZEZ(_Z)M-M—.‘—,'(ZIC+3__i_j)!

1=0 7=0 k=0 £=0

2k—-28+1—4 . 20+1—5
o €08 0) sing j clibioi)
a; a3 2,k—t,¢ (58)

Th i i
s no ;I\lfii\il\elz?lllutltonl}tlas been implemented by Nishioka and Atluri (1981, 1983a) in
- ent alternating method for the solution of
: robl
surface flaws in complex structural geometries. : e of embedded or

2.2 An Elliptical Crack m a Transversely Isotropic Solid

Rec . .
o air;gz;jlapyl'a}‘l, Zthong and Atluri (1988) have extended the VNA solution procedure
ersely isotropic case, with arbitrary traction
t i 9 the face of an ellipti
In a transversely isotropic solid, with th eing ereglert the
axis of elotie eymne) , e crack plane being at an arbitrary angle to the
A i s : :
symm::ra;esrtllalh 11 hsa.txd }:,o be transversely isotropic when it possesses an axis of elastic
c at the material is isotropic in the pl i
be the dienty hat the e planes normal to this axis. Let z
ic symmetry. Then the stress-strai i i z,9,2
S e et ress-strain relations in the (z,7, Z)

0z = Cu%ﬁ-cu%%ﬁ-cls%

oy = Clz%%JrCui—?JrC,g%—?
du. V-

Tgz = C“(Ta%-f_%)

o e a3

(02,09,02, Ty, Taz, Teg) and (ug, ug, u,) are stresses and displacement components in the
(2,9,2) system and C;; are elastic constants, as discussed in Lekhnitski (1981).

The displacement field us, ug, and u;, is represented in terms of potential functions
#; (7 = 1,2,3), such that it satisfies the equilibrium equations expressed in terms of
displacements, identically, as follows:

a a3
w = (it ) - e
a O3
ug = 55(‘231 +¢2) + FT
a
up = 5;("114’1 + ma¢;) (60)
Cun,- - C“ (013 + C44)ﬂj .
m, = = = l, 2 61
. Cis+ Cu Css — Cun; ’ J ( )
The quantities n; and n, are the roots of the quadratic equation in n
C11C44n® + [C13(C13 + 2Cy4) — C11Cas)n + C33C4y = 0 (62)
and ng is defined as: &
o (63)

B=Cu—Cn)

Introduction of the following modified coordinate systems (z;,y;,2;) (7 = 1,2, 3)

I; = I
gcos 0; + ——sin
y; = ycosh; + ——sinb;
i it
z
z; = —gsinb; + cosf; (64)

7 \/r_z,;

yields the expressions of the elliptical crack in each modified coordinate system

o i
a—;+b—;=0 in z=0 (j=1,2,3nosum) (65)
7 7
where
G,J' = a
b = b (cos Gcosb; + sin #sin 0]-) (66)
7
and
tand; = tanf (67)

/Ny

Here, 0 is the angle between the physical crack axis (z) and the material axis (2).
Now, each of the potentials ¢; (j = 1,2,3) can be expressed by the harmonic

equations in a set of coordinate (z;,y;,2;) (J = 1,2,3), as:

o? 9? & . .
((9_1:JZ+3—3/?+527> $; =0 (j = 1,2,3nosumon j) (68)
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Thus, to solve the problem on hand, appropriate potential functions ¢, (5 = 1,2,3).

each in a different set of coordinates (z5,y5,2) (7 = 1,2,3) will now be assumed. The

necessary ellipsoidal coordinates &, &, 8 (7 = 1,2,3) for a point in the Z;, Yj, zj
(4 = 1,2,3) coordinate system are given by the roots of the cubic equation

wi(&) =0 (7=1,2,3 nosumon j) (69)
where 2 2
() =1- T _ ¥
w; (&) a? + &1 b2+ ¢ g (70)
and

“aZSfiS—be£§50§£g<oo (71)

Appropriate expressions of the potentials ¢; for the present case of transverse
isotropy as discussed above, are assumed as:

M ¢ )
$i=23 By i Flyx (72)

£=0 k=0

where, B‘Z_k,k are unknown coefficients to be determined, M is the highest order poly-

nomial terms considered and F{_k’k is defined as:

5 F:Lats o0 ds

Fy= gorz [, loglarer 22 (73)
azi 63/,- & V Qi (s)

As can be easily noticed, the abore equation is basically the same as Eq. (24) or
Eq. (29) in the VNA solution procedure for real n; and n, Eq. (63). Therefore, the
VNA solution procedure can be used to obtain the complete general solution for an

by Rajiyah, Zhong, and Atluri (1988) in more detail.

2.3 A Circular Crack in an Isotropic Solid

The analytical general solution for acircular crack in an infinite isotropic elastic solid,
subject to arbitrary crack-face tractions, is briefly summarized here. The solution was
revisited by Liao and Atluri (1988), based on the Fourier-Hankel transform technique
developed by Sneddon (1951), which was later generalized by Kassir and Sih (1975).
Although Kassir and Sih (1975) hare derived the general solution for this type of
problem, certain portions of the mixed-mode solution were lacking in their final results.
Thus, the complete form of the general solution has been recently rederived by Liao
and Atluri (1988), as follows:

For a penny-shaped crack embedded in an infinite 3-D elastic body, we need to solve
the following mixed boundary value problems.

Mode 1
0,;(7',0,0) :a,;z(r,(),O) =0 1‘20, OS@SZW
022(r,0,0) = py(r,9) 0<r<ag; 0<0<2n (74)
uz(rv 10):0 r>a; 0§0§27r
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(@ is the crack radius)

Modes II and III s
>0 0< < 2nm
9,0)=0 Tz
58903 = pa(r6) o<r<e  0<#<or (15)
Uﬂz(r’ay 0) = p3(7"0) 0 S r<a = =

<0<2
u,(r,0,,0) = us(r,0,0) =0 r>a 0<6<2m

- e d
here p,(r,8) (e = 1,2,3) are given functions describing the distribution of the loads
w a bl - 4

ied to the crack surface. . .
appk‘:l appropriate solution for this boundary-value problem can be obtained by e

. . .
pressing the displacement components in terms of three harmonic functions ¢4 (

1,2,3), as

01 O 20, 08 O

u, = (1—2V)¥+zaraz Y, ar 87‘302

100 A0 00 o jL00E 20 18
w = (=) Z5+ os ~ 25, arz:o r 980z

9 94 0¢s s (76)
u, = _2(1_”)3?+Zazz —(-2) ey

i i il
The corresponding stress components in terms of the potentla.l fux:xctions ca:tb:nzasth};
obtained by the above equations through the use of t}.le stralrtll-ldxtsp(ﬁaciesm; ey
i i bove equations, it is seen that ¢,
stress-strain relations. From the al : t
mode I, and ¢, and ¢s are related with the mixed fnode of II and GIII. T
In (;rder to express general loadings, the applied loads p.(r,f) a

Fourier series as follows:

Pa(r,0) = i

n=0

cosnb - Agn(r) (a=1,2,3) (77)
sinnf - Bun(r)

i i th
In order to solve the proposed problem, the potential functions are represented by the
n

Fourier-Hankel transform:
cosnd [ Cun(s) 1

3 ~Jn(rs)e **ds (¢ =1,2,3)
¢Q(T,0,Z) = ZO sinnd Jo Dc,,.(s) 5 (rs)

. llowi
The substitution of Eqgs. (77) and (78) into Egs. (74), (75) and (76) yields the following

relations:

(78)

Mode 1
1 [s [ dt tprtl Ay (r) dr
Cl,.(s) = ";Vé;/o Jn+1/2(3t)tn4/2/; (t2 - ,.2)1/2
1 [s (o dt t Byn(r)dr (79)
Din(s) = —;\/27/0 Jn+1/2(5t)tn-1/z_/0 (&2 — r2)1/2
[o) and I

2
AN e /l ST Aso(r) dr
Oute) = 33 [ s [

1 ] a dt t rzAzg(T) d (80)
Csols) = ;\/g/o sa(ot)5i7a [, Gr—rep 4

1937



Cunls) = 5 [0 = UOI Soaya(st) + B30 Imrpa(ot)] dt,  m > 1
Csls) = /3 /o (91(t)Ju-1/2(5t) + B (t) Ty a(st) dt n>1

Dan(s) = \/5/ (1= 0)®4 () Jnesya(st) — B5(t)dpssya(st)] dt, n > 1

Da(s) = 3 / [9%(t)T1-1/2(5t) + B3(t) T2 (st)] dt n>1  (81)

where,

Ql(t) e _t—n+3/i "[Az,, T) Bz,, r
(2- u)m/z?/ (¢ — )17 Lar

o:(t) —t 32 r"[Asn(r) + Ban(r
( (2- V)u\/Z_w/ (¢ — )i -

%:(t) —<I>1(t) Pk n=1/3 {(1+2n)u

1

dr

e [ 7 3n(r) = B
X (tz —r )md +/ "+2[Atzzn(7') ';'lgSn(T)] }

e { 2 I ) 4 Bt

X (82— )12 dr 4 /: "3 Bya(r) - Asn(’)] r}

(2 —r2)1/2

o3(t) = —‘P 1(t) +

Wlthout 01 0o t y OTs a ()de ven b
g ng nt detalls, the stress intensit fact fOr “ the m S are g1 y
3¢}

K = Z cosnf 1 /"‘ Ayn(r) Fhtl
0

sinnf gn+1/2 Bl,,(r) (az - rz)l/z

dr

n—O

a

Ky = 2 2 da0(r) 2uv/2 &
Vmadlz Jy (a? - r2)1/2 dr + o Z[(Iil(a) — ®2(a)] cosnd
n=1

Zuf

ZI(I —v)®](a) + ®}(a)]sinnd

n=1

2#\/_

Kin = - Z[ 1 -1)®(a) + ®5(a)]sinnd

2 ¢ r2A4y(r) 2
Vral? Jy Zﬁiz)l/g “\/_Z[‘I’* — ®}(a)] cosnf (83)

3 Finite-Element and Boundary-Element Alternat-
ing Methods for 2D and 3D Crack Problems

3.1 Concepts of Schwart:-Neumann Alternating Method

In the alternating method for an emtbedded crac

SESTETTre, mn i s k in a finite solid, two types of solution

Solution 1: A general it
: soldtion for en embedded crack
crack-faces being subjected to arbitriry tractions. AL B By vt the
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Solution 2: A general numerical solution technique such as the finite element method
or boundary element method to solve for the stresses at the location of the postulated
crack in an otherwise uncracked structure.

Henceforth we assume, for convenience, that a finite-element method is used. The
steps involved in the finite-element alternating method for an embedded crack in a
finite body are described below:

1 Solve the uncracked finite body under the prescribed external loads by using
the finite element method. The uncracked body has the same geometry as the given
problem except for the crack.

2. Using the finite element solution, compute the stresses at the location of the crack.

3. Compare the residual stresses calculated in step 2 with a permissible stress
magnitude.
4. To create traction-free crack faces as in the given problem, reverse the residual

stress at the location of the crack as computed in Step 2 and ”least-squares fit” them
to polynomials.
5. Obtain the analytical solution to the infinite body with the crack subject to the
polynomial loading as in Step 4.
6. Calculate the stress intensity factors for the current iteration, using the above
analytical solution.
7. Calculate the residual stresses on external surfaces at the body due to the applied
loads on crack-faces, as in step 4. To satisfy the given traction boundary conditions,
at the external boundaries, reverse the residual stresses on the external surfaces of the
body, and ¢alculate the equivalent nodal forces.
8. Consider the nodal forces in step 7 as externally applied loads acting on the
uncracked body.

Repeat all steps in the iteration process until the residual stress on the crack surface
becomes negligible. To obtain the final solution, add the stress intensity factors for all

iterations.

Since the alternating method is iterative in nature, the finite-element equations
may, in general, have to be solved repeatedly for different applied loads, while keeping
the stiffness matrix the same. To save computational time, special computational
techniques were implemented by Nishicka and Atluri (1983a). These are explained
below.

As seen from above, for the ﬁmte—element alternating method, we need to solve the
following type of finite-element equations:

[K][qo,ql,...,q"]:{QO,QI,...,Q"} (84)

and

Q = Qi(¢); i=12...,n (85)

in which the superscript denotes the cycle of iteration, [K] is the global (assembled)
stiffness matrix of the uncracked body, and remains the same during the iteration
process, and ¢' is the nodal displacement vector for 1th iteration. Q' is the nodal force
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e

e e —

vector for the 7th iteration and i i
as expressed by Eoy (st) and depends on the solution for the previous iteration ¢!
. A;)l efﬁc1§nt equation solver. OPTBLOK developed by Mondkar and Powell (1974)
L d};ﬁgel(;sfe tl’.o“:ave computaticnal time in solving Eq. (84). The solution algorithm
Into three parts, i.e. (i) reduction of stiffness matrix. (ji i
vector, and (iii) back substitution. In OPTBL e R o of load
. OK the reduction of stiff ix i
done only once, although i ke suBaietion o b
gh the reduction of load vector and back s ituti
ubstitution may b
repeated for any number of load cases. Thus, denoting the CPU time for each pari b;

Ti, T3, and Ts, respectively, the t i i i i
o e e T ¥, the total CPU time T in solving Eq. (84) using OPTBLOK

T=T1+(n+1)(Tz+T3) =(T1+T2+T3)+n(T2+T3) (86)

whe? n is' the tota! nu'mber of iterations. Since Ty is much larger than (T2 + T3)
asiu .stantlal reduction in computational time, compared with the case in whzich E? ’
’(r )'“15 solved for each iteration [i.e. T* = (n + 1)(Ty + T3 + T3)], may be expecteg-
. . . . 2 ’
th: 1nust£ate tfhls situation, we consider the example of a set of linear equations with
umber of equations of 1960, and half bandwidth i

. ) of 200, wherein the CPU ti
i‘:; ere(djl‘lctu;n of load vecto.r and back substituticn was about, 5.6% of the total Cllr’nl(;
et t]zl + :c,t'_' O..056T). Since, for a typical problem, the present alternating method
rods ¢ ree 1.eratlons (n = 3), the additior:al cost in this case is only about 16.8%
Which is considerably smaller than the 300% in the case when E (84) is sol ' for
each iteration. * ' solved for
i ,:3 ;ﬂ:iien; ?roce?uri was also devised for the calculation of the nodal forces re-

ep 7 (see alsc Eq. ! i i

e expreseect oy q. (85)). In general, the stress field in a general solution can
o=PC (87)

::)ll;rie.l’ is .the basis function metrix for stresses, and C is the vector of unknown
; clents in the general solution which will be determined in step 5. Then, the
equivalent nodal forces in step 7 can be computed through: ’

Q,. =-G,C (88)

and
G, = / t
[ N'mPds (89)

(v:fh:;: rer:e:I::otteshthe nfumber for a finite element, Q.. are nodal forces, N is the matrix
nt shape functions, n is the matrix of the n 1 di i i
& ! . : ormal direction cosines. Al-
o (;:I,lg‘h the matrix P has t.he singularity of order 1/,/7 at the crack-front, the functions
ulecaylvery rapidly with the distance from the crack-front. Thus, the matrices G
:il: calculated only at the ex.ternal boundary-surface elements which satisfy the cond?—l
bo:n;mm < Srzle, whlere Tmin is the distance of the closest nodal point of each external
ary-surface element from th i i i-maj i
of Then Thom T e center of the ellipse and a, is the semi-major axis
star’fo :at\;:a c.ompu.tation time, the G,, matrix can be calculated only once prior to the
of the 1terat19n process. Thus, the equivalent nodal forces Q' in each iterati
can be evaluated without integration. .
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3.2 3D Alternating Techniques for Part-Elliptical Surface
Cracks

The VNA solution given in 2.1 serves as Solution 1 required in the alternating technique.

Now, some comments concerning the solution of surface flaw problems in finite
bodies, through the present procedure, are in order. Since the analytical solution for
an elliptical crack in an infinite solid is implemented as solution (1), it is necessary to
define the residual stresses over the entire crack plane including the fictitious portion
of the crack which lies outside of the finite body. Moreover, it is well known that the
accuracy of the ”least-squares” function interpolation inside the interpolated region
can be increased with the number of polynomial terms; however, the interpolating
curve may change drastically outside the region of interpolation. For these reasons, in
Nishioka and Atluri (1983a) numerical experimentation was carried out to arrive at an
optimum pressure distribution on the crack surface extended into the fictitious region.
For a semi-elliptical crack which lies in the region of —a; < z; < a; and 0 < z; < a,,
it was concluded that the fictitious pressure, which, for the region of —a; < z; < O,
remains constant in the z, direction but varies ifi the z, direction, gives the best result
amorig the several numerical experiments petformed in Nishioka and Atluri (1983a),
evencthough the results for other types of assumed pressure in the fictitious region
differed only slightly (+2%).

This procedure of fictitious pressure distribution for a semi-elliptical surface crack
was successfully used on the analyses of surface cracks, in finite-thickness plates subject
to remote tension as well as remote bending [Nishioka and Atluri (1983a)] and in
pressure vessels [Nishioka and Atluri (1982)].

Based on the studies in Nishioka and Atluri (1983b), the following " fictitious” stress
distribution is recommended for quarter-elliptical surface cracks. For the first quadrant
(z1,z2 > 0) (namely, the actual surface crack), the residual stress can be calculated by
the finite element method and is a function of the coordinates z; and z,. For the other
quadrants, the fictitious residual stress is defined as

ok (0,z;) for the second quadrant (z; <0,z > 0)
oft ={ oR(0,0) for the third quadrant (z; <0,z; <0) (90)
o (z,,0) for the fourth quadrant (z; > 0,z2 < 0)

The above alternating method has been successfully applied to the problem of semi-
elliptical surface flaws in plates subjected to tension and bending [Nishioka and Atluri
(1981, 1983a)], semi-elliptical surface flaws in the meridonal direction at the outer and
inner surfaces of pressurized thick and thin cylindrical vessels [Nishioka and Atluri
(1982)], quarter-elliptical surface flaws emanating from pin-holes in attachment lugs
[Nishioka and Atluri (1983b)], multiple coplanar embedded elliptical flaws in an infi-
nite solid subject to arbitrary crack-face tractions [O’Donoghue, Nishioka, and Atluri
(1985)), and multiple semi-elliptical surface flaws in the meridonal as well as circum-
ferential directions in cylindrical pressure vessels [O’Donoghue, Nishioka, and Atluri
(1984a, 1984b)].

The nature of singularity at the point where the crack-front interests the free-surface
is still not yet completely understood. The consensus emerging from the literature
of a weaker singuarity (than 1//r) at a normal crack/surface interaction has been
corraborated recently, by Burton, Sinclair, Solecki, and Swedlow (1984). These authors
present two independent numerical analysis techniques for the investigation of some

AFR-3—C
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#hehial s1ae b /auiface interaction problems. They summarize their findings, thus: "the
Aes &44 in bhe woergy reloane ratesfound as the free surface is approached in the various
peulidasn Lisaled are probably not significant from a fracture toughness testing point
@ siew and not of major consequence in cyclic life calculations, although there are
sssne indications that this may not be the case if near-surface residual stress fields are
present; and that these variatiors in energy release rate can be compensated for by
relatively minor perturbations in crack-front profiles”.

Thus the results obtained by the above finite element alternating method based on
the VNA solution may be thoughtof as being of adequate acuraccy for most engineering
applications. !Recently, Nishioka and Furutani (1987) have developed a more efficient
alternating method for the analysis of a group of interacting multiple elliptical cracks,
by taking account of geometrical srmmetries of crack shapes and location in conjunction
with the symmetry of the VNA solution.

Intensive studies of the perfornance of the finite-element alternating method have
been made by Raju, Newman, ard Atluri (1987) for small surface and corner cracks,
and by Raju and Atluri (1988) fora part-elliptical surface crack in a cylinder. From the
performance studies of the finite-tlement alternating method, Raju and Atluri (1988)
summarized the attractive features of the alternating technique as follows:

(1) The methcd models only the uncracked solid with finite elements: hence, no special
modeling of the crack front is required. In addition, the finite element mesh at the
location of the crack, in the uncracked solid, can be completely arbitrary in geometry.

(ii) The method uses the closed-orm solution for a crack in an infinite solid which
can accommadate arbitrary tractions on the crack surfaces and, therefore, can handle
complex loading conditions.

(iii) The stress-intensity factors, including the individual modes, are obtained as part
of the solution, in an analytical form, and, hence, post-processing of the output data,
as is usually done in the finite-element method, is not needed.

(iv) Several crack configurations could be analysed with a single arbitrary mesh ideal-
ization of the uncracked solid, whereas the conventional finite-element method requires
a different mesh idealization of the tracked structure for each crack configuration. Thus,
this method can efficiently generaie very accurate stress-intensity factor weight func-
tions or influence functions, for a variety of crack aspect ratios, in a single computer
rum

The above applications of the wternating technique were limited to mode I cases.
Recently, a mized-mode alternating finite-element"technique in conjunction with the
VNA solution (with further improvements in algebraic details), has been developed
by Simon, O’Donoghue, and Atluxi (1987). They evaluated the polynomial influence
functions for an infinite solid with an elliptical crack subject to shear loading, and for
a cantilever beam with a semi-elliptical surface crack subject to end load.

Applications of the finite-element alternating method have been made by Nishioka,
Rhee, and Atluri (1986), O’Donogiue, Atluri, and Rhee (1986), and Rhee (1986), for
fracture mechanics analyses of varicus offshore structural components, such as stiffened
plate and shells, tethers, or risers. A recent literature survey [Rhee and Kanninen
(1988)] pointed out that the altersating method is most efficient for stress intensity
factor analyses of planar surface o embedded flaws in complex geometries such as
intersecting tubular structures, etc.
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8.3 2D Alternating Techniques for Line Cracks

As mentioned earlier, the general solution for a crack subject t'o ar})itrary c1:ack-fac.e
tractions i.e. Solution 1 is required. The general solution for an mijmltfe 2D amsotropllc
body, developed along the lines of Gladwell and England (1977), is given .below. Fo;
lowing the solution procedure in Sih and Liebowitz (1968), the stress and displacemen
field can be expressed in terms of two potential ¢ and ¢ as follows:

2z = 2Re[si¢'(z1) + 53¢ (22)]
7w = 2Re[d'(z1) +¥'(22)]
Ty = —2Re[s14'(21) + s2¢'(22)]
u = 2Re[p1d(z1) + p2v(22)]
v = 2Relad(z) + a(2)] o]

where
si=m=og+if, S=pr=o0+if;
Mg = f1 Mg = fig
21 =T+ 81y 29 =T+ S2Y S1 7 82 (92)
where a; B; (7 = 1,2) are real constants. u; ( = 1,2,---4) are the roots of the
characteristic equation

anpi — 2013#? + (2a12 + ﬂtse)lt;‘T — 2a36p; + @22 =0 (93)
where a;; (1,7 = 1,2, -,6) are the material constants of generalized Hooke’s law
€z = Q11T + Q12Tyy + Q1672
€y = G12Tzz + Q22Tyy + A26Tzy
Vzy — Q16722 Se aZGTyy + AgeTzy (94)
The other constants in Eq. (91) are defined as:
= ‘11133 + a1z — a1881 p2 = an-’: + ay2 — @652
2 s
_ 1287 + ag2 — az651 = ay283 + G22 — Q2652 (95)
q —————31 _————82

Suppose a line crack on y = 0 |z] < a in an infinite plane is inflated by equal and
opposite tractions, over the faces of the crack, given by

Tyy — T2y = ~[p(t) +1s(t)], [t|<a
with zero tractions at infinity. Then the potential functions can be written as below:

¢(21) = ¢i(z) + ¢2(=1)

(96)

V(z) = ¢i(z2) + ¥i(z) (97)
where
(2=2) dite) = L [X(t;’](jzft— )
(2= - 55 [ g {os
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where

X(z1) = (a1 + a)"l/z(zl —a)”1/2
Y(2) = (22+ a)_l/z(zz — a)‘l/2 (99)

and

(51— 82) @ (=)

Il

_X(21) /a s(t)dt
2ms Joa [X(t)]*(t — 21)
_Y(2) re s(t)de

(82 — s1) 3 (=) 2mi Ja [Y(2)]*(t — 2,)

(100)

We approximate th i 4 I
(1077)] e the applied creck-face tractions in the form [Gladwell and England

N
PlE) +is(t) = = 3 buU_y (1 jt < a (101)
n=1 .
where U,_,(t) is the Chebyshev polynomials of the second kind and is defined as
U, = sin|(n+ 1)0]/sin 8 t=acosf (102)

It could be easily shown that:

2¢/(2) = ( L )ic"cn_l(;:l”( ! )id,.c,,_l(zl)

S2 =81/ S1 — 82

2¢'(z) = ( A )f:CnGn—l(Zz)‘l‘( ! )gdnGn_l(zz) (103)

S1— 82/ .5 S2 — 81
where
¢n = real (b,)
dn = i(imag (b,))
N
2 = S2 R,.(z ) 1 N, Rn
¢(21) <82 == sl) ngl s n : + (Sl = 82) Zl d" 7(1-21)
N
2 _ S1 Rn(Zz) 1 o Rn
¢(22) (31 - 32) ngl e n + (Sz — 81 ) ngl d" HZZ) (104)
and
Gn-1(2a) = —(22 - a?) V2R, (2,) (a=1,2) (105)
Ra(2a) = a{za/a - (2L /a® — 1)V/%) (e=1,2) (106)

1Ty f (7 = e a anner stent w tl ose
Ille stless intensit; actors .I(J 1 II are d ﬁned mn
> ) m o consi n lth

_ 82 — S .
K, = 2\/2—%( - 1) z111_11.1‘1(21 - a)'/*¢} (=)
K = 2V2n(s; — sy) Jim (21 — 0)'/28} (1) (107)
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It is easy to show that
N
KI—z'K”-——~—\/7raZb,, for z=a
n=1
N
K;—iK;=+ma) (-1)", for z=-a (108)
n=1

The general solution for an infinite isotropic 2D solid with a crack subject to arbi-
trary Chebyshev polynomial loadings can be found in Rajiyah and Atluri (1988).

In the infinite solution, the crack face tractions are defined on the entire embedded
crack. It is thus necessary, in edge crack problems, for tractions to be defined over
the entire crack plane, including the fictitious portion of the crack which lies outside
the finite body. The actual distribution chosen for the fictitious tractions on the crack
face defined outside the finite body will only affect the character of convergence. The
solution procedure for an edge crack is the same as the one described for an embedded
crack except for minor differences. Now a mirror image of the half crack and the
tractions acting on the crack face are extended to obtain the full crack length including
the fictitious portion of the crack. Using the analytical solution for an embedded crack
in an infinite domain, the stresses can be evaluated at the boundary of the cracked
specimen. The rest of the algorithm remains the same as the case of an embedded
crack.

Using the above-mentioned 2D alternating technique the mixed-mode weight func-
tions. have been cost-effectively determined for isotropic plates (Rajiyah and Atluri,
1988a,b) and for orthotropic plates (Chen and Atluri, 1988a,b). For isotropic plates,
Rajiyah and Atluri (1988a,b) have used the boundary element alternating method. In
this case, the boundary element method is better suited, since, a point-wise evaluation
of stresses at the location of the crack in the uncracked body is more accurate, and more
simple, once the tractions and displacement on the boundary are determined through
the standard BEM. It can be expected that the above method would yield highly ac-
curate results for this class of problems, in the least expensive way even compared to
the finite element alternating method.

On the other hand, for anisotropic plates, since the boundary element method itself
becomes cumbersome, the finite element alternating method is more suited, as has been
used by Chen and Atluri (1988a,b).

4 Domain Integral Methods for Computing Frac-
ture Parameters in 3-Dimensional Crack Prob-
lems, Under Arbitrary Histories of Loading

It is well-known that energetic methods, such as based on the J-integral and other
crack-tip integral parameters, play an important role in elastic-plastic and inelastic
fracture mechanics, under arbitrary histories of loading [see, for instance, the mono-
graph edited by Atluri (1986)]. For elastic crack problems, in three-dimensions, the
evaluation of the J-integral (in Mode I problems), the stiffness derivative method [Parks
(1974, 1977)] and the virtual crack extension method [Hellen (1975)] proved to be quite
useful. Various extensions to, and a certain variety of improvements of, these methods
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were recently presented by Delorenzi (1985); Li, Shih, and Needleman (1985); Shih,
Moran, and Nakamura (1986); Nakamura, Shih, and Freund (1986); Nikishkov and
Atluri (1987a,b and 1988). These later methods are currently labeled as the ”Domain
Integral Methods” for the computation of crack-tip integral parameters in non-elastic
fracture under arbitrary load histories. In the following, a brief description of these
domain-integral methods, as applicable to the analysis of mixed-mode behaviour of ar-
bitrary shaped cracks (surfaces of discontinuity) in 3-D structures, with elastic-plastic
or inelastic material behaviour, and under arbitrary loading, is given.

For elastic problems, the energy release rate per unit crack-extension (in a self-
similar fashion) is given by:

du; du;

d
Jl_g_/s‘t;dadSﬁ-/VfidadV—a/VWdV (109)

(assuming that S,, where non-zero u; are prescribed, is zero). Eq. (109) is valid for
mixed-mode loadings, and in 3-D problems, it is understood that (du;/da) represents
a first-order change in u; due to a local perturbation in the crack-front, and J, is the
local energy-release rate. In a finite element model, Eq. (109) may be written as:

dg d 1
= Y3 5 110
Ji da da(2qKq) (110)
1 dK
= 59~ 111
2qdaq (11 )
1 dK,
= 3% 112
2q° da % ( )

Eq. (111) follows from (110) since @ = qK at equilibrium and Eq. (112) follows from
(111) since a change in crack length can be seen to affect the stiffness matrix of only
a small-core of material, in the domain V,, near the crack front. The evaluation of
dK,/da is usually accomplished through a finite difference method [Parks (1974), and
Hellen (1975)]. The definitions of J, and Js, which involve the more mathematical
concepts of translation of the crack, in z, and z, directions [see Atluri (1986)], are not,
in general, amenable to calculation through the above stiffness-derivative methods.

The basic advantages of the domain-integral method can be seen from the following,
to be: (i) they allow simple computation of all the 3 components J; of the vector J
integral; and (ii) in the case of J;, the need for a finite difference evaluation of (dK,/da)
is obviated.

In a general 3-D problem, for arbitrary material behaviour and loading, one may
define the J-integral vector components as:

. Ou;
Jk = l]j[é - [Wnk — Oy5 5;77.]'] dr (I13)

where W is the density of stress-work in arbitrary loading and arbitrary materiai be-
haviour; o;; are stresses, u; are displacements, and n, are components of the unit
normal vector to the surface of the tube at points on contour T,. In principle it is
possible to define Ji in any coordinate system, but for the purposes of prediction of
crack behaviour, it is more convenient to have a local crack-front coordinate system
Ty, T2,Z3: Tp is normal to the crack front and lies in the plane of the crack surface, z,
is orthogonal to z; and the crack surface, and z; is tangential to the crack-front and in

1946

the crack-plane. We introduce the equivalent definition of the near-tip J -integral along

the surface of the tube, as:

ou;
JiA = lim Wny — 0i;—n;| dA, k=1,2 (114)
e/a—0JA, [of 2
A0
where A, is the surface of a cylinder, with the centerline along the crack-front, it.,s
radius being €, and the length of the generator being A along.t-he crack-front. This
definition is more convenient for numerical applications. L1kew1‘se, one may be define
the energy-release components for symmetric and anti-symmetric deformation modes,

as:
: Au!
i I I—in, 115
oo = Jm [, (W el o) 44 (119)
A—0
aull
GuA = lim (W”nl—a{J—’—"—n,) dA (116)
:gA—bn Ae 0z
and ”
Guid = lim [ (W ny — o5, —2n; | dA (117)
m e/a—0JA, 61;1‘
A—0

where the deformation field is decomposed, locally near each differential segment of the
crack-frent, into symmetrical and skew-symmetric parts about the crack-plane locally,

as foliows:
{ul} +{u”} 4 {uIII}
; 0
Uy + u'l 1 u; — ul 1
}‘ uz—u'g + = u2+u'2 + '2' 0 (118)
2 uz + uy 2 0 usz — uy

Il

{u}

Il

{o} = {o"}+{o"}+{o""}

O11 +0"u 011 —O"u 0
022 + 0y 032 — 0%y 0 ’
= Momton 1 WRET 0336033 (119)
2 012~ 0'12 2 012 + Oy9 2 ,
033 — Og3 ! 0 O3 + 043
!
o031 — 03, L 0 031 + 03,
wi(z1, T2, Z3) = ui(T1, — T3, T3) (120)
U:j(“?hl?z,zs) = U«'j(zl,—zz,zs) (121)

4.1 Transformation of Displacements, Strains, and Stresses to
the Crack Front Coordinate System

We can simplify many developments if this transformation is performe.d prior tc_) the

calculation of J- and G components. Let X, X3, X; be a global Car.tesum co_ordmat,e

system; and z,, T3, T3 be the crack front coordinate system for a particular point along
2 ’

1947



e M -

}he cﬂ:“u‘:k front. For the fieﬁnition of a crack front coordinate system at any point, it
1s suflicient to have the direction cosines for a unit vector along z, ’

X, = {Xpl’ Xp2, Xps} (122)
and for a unit vector along z4

Zp = {th Zp2a Zps} (123)
Then it is easy to define the orientation of z, as

Y, = Z,XX, (124)
Y;’l = ZpZXps = Zanpz.
},P? = ZpSXpl - ZplXpS
Yis = XX — Zp2 Xp1 (125)

We define the coefficients of a transformation matrix q;, as:
(7] '

a1 = Xp a1z = X,y a;s =X

p3
a1 =Y, a3 = Yy azs = Y3
W=Zn am=Zp  as=Zy (126)

The transformati : .
ation of coordinates, displ :
s acements, strai
follows: P s ns, and stresses can be done as

T = agky (127)
= g (128)
G = Gipajep, (129)
%ij T ipajeTp (130)

Here t i i
re the superscript g stands for the values in global 'coordinate system.

1
4.2 EDI-Technique for J1, J2, and G Calculation

After a'point by point coordinate transformation (127), the crack front is straight. Let
ler c:rn:uli.erdtlrxe segmerllt of cra,?k front an('i the volume around this segment insi.de a
smi]] cy]ix:d rxca; do?aln V. V is the volumie of the larger cylinder, V, is the volume of
g Ay inder o r‘a ufs € around the crack front segment, A is the cylindrical surface

P A is t}.!e cylindrical surface of V, and Ay, A, are side surfaces of V. Note that at
any differential segment along the crack-front, the considered domain V is still iy
smaller than the overall dimensions of the structure. o ot much

Then, in general, we can redefine the near-tip parameters J and G;; as:

du
J = — [ &
== (W"* - "a‘”) sda (131)
Giuf = -—/ wir Jug
-, ny— 03:'8—1171,- sdA (132)
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Here, s = s(z1,23, T3) is an arbitrary but continous function which is equal to zero on
A; and nonzero (equal to 1) on A,; and f is the area under the s-function curve along

the segment of the crack-front under consideration.
Using the divergence theorem, we have the following representation of Jg.

s Ou; Os ow a du;
= —f W-—" 0, ——— | dV — bl ANy () et \%
Jef < dzy i oz sz) d /v—v. [8:1:;, azx; (a" axk)‘}'s d

V-Ve
Bu,-
+/ Wn,,—a,-,-—-—nj sdA k= 1,2 (133)
Ar+A, oz

This expression represents a further variant of the virtual crack extension method, but
the elimination of the actual process of virtual crack extension during the development
of (133) allows us to use any s-function for the caiculation of Jx. Thus, we have a new
and computationally more appealing interpretation of the VCE approach.

In the case of the presence of nonelastic (thermal and plastic) deformations we can

define W as

W = /O;jdE.',' (134)

€ij = Efj + Efj + E:j (135)

where €f;, Efj, and Efj are elastic, plastic, and thermal parts of strains. Assuming that
the stresses have an elastic potential, i.e.,

oW
= (136)

Oi; =
7 O¢i;

the second term of (133) can have the form

aw e
(f): = _/V_V (b_z: —a,-_,,-azi>st
oW et
= = s igas =3 1% 37
/V-V, ( 9z s Az ad (A27)

Here we used equilibrium equations (in the absence of body forces), and introduced the

definitions:
wr - /g,.jdef; (138)

: (139)

— P t
i = Eij T E;

It is evident that in the absence of nonelastic strains the second term of (133) is equal

to zero. If the s function is equal to zero on faces A, and A,, then the third term of

(133) will be equal to zero as well.
Considering Gy for the linear elastic case (in the absence of body forces), we can

have frem equation:(132),

ds duz ds Oet;
- _ win =2 gy Ve V—/ U sdV
G/ /v-v. ( oz, 93 9z, 9z, 4 V-V, % oz, °

d
+/A a (W”’nl - 03j5?nj) sdA (140)
1 2

1
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The third terms of (133) and (140) can be simplified if the faces A; and A; are orthog-
onal to the crack front (n; = n, = 0 on A; and A4,).

Aga.'in, in Bq. (140), the second term is equal io zero if £ = 0 gnd the third term is
absent if s = 0 on A4; and A,. We note that the domain integral algerithms analogous
to those in (133) can be developed directly for the energy—release-raté giantities G
and Gy; as defined in Egs. (115) and (116) also. ‘ '

: t is. now easy to see the advantage of the domain-integral method over the ”stiffness
derlyatxve” method for the computation of the first component of J, i.e., Jy, for elasto-
static problems. If in Eq. (133), the function s is taken to be zero at (A’l -}-’Az)' and if
})ody-forces are zero, in elasto-static problems the second and third terms on th’e r.h.s
in (133) vanish identically, and Ji can be written as: o

J1 = —lim

e—)

ds du; Os
Vv, [WE —O';ja—xl-a‘zj dv (141)
. We compare Eq. (112) of the stiffness derivative method to the above Eq. (141)
Without loss of generality, we assume that the domain V, of Eq. (112) to be the samt;
as the domain (V — V,) of (141). In (112), it is clear that the integral is quadratic
in g, say of the form ¢, - A, - ¢,- Thus the domain integral method gives directly the
matrix A, [which is equivalent to dK,/da] without using the finite difference method to
evatl}llla(f.ie (dK,/da) as in (112) of the virtual crack extension or the stiffness derivative
method.

4.3 Choice of s-Function

It is natural to use a parametric representation of function s inside any element as:
1
s = N’ (I=1...20) (142)

where NI = N’(E,n,g) — quadratic shape functions, I is the node number. We
suppose summation over repeated indices. Then the s-function should be defined in
'teltms of (142) by using 1 or 2 elements in z3 direction for the crack front disk. Usually
lt. 1s not useful to have a s-function more complicated than a linear function in radial
direction. Several simple functions s are discussed below:

(a) The .disk has two elements each in z, in z, directions respectively. The function s
ca{l be defined on the small tube of radius €, for both the elements along z, (with ¢
being the natural coordinate along the crack front segment), as: ‘

1
E.1 : = ~(1 +
8= ol b}

. 1
EL2 : = 2(1 -
s=5(1-¢)

The area under the s-function curve along the meridian of the surface of the small tube
or on the crack-front (¢ = 0) is equal to

I=3(80+49)
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(b)

(c)
s ="(1—-¢%
2
F =34
(d)
s 1
f=nA

Assuming a s-function that is linear in the r-direction we have its value for a par-
ticular point:
r—r,
§=§——
7'! = Fg
where s, — the value of s function at the point r = r,, r is the distance of the point
in question from the surface of small tube, r, is the radius of the small tube, r; — the
outer radius of crack front disk. In practice it is often useful to have one element in

the r-direction for the disk and to employ degenerate quarter-point singular elements
around the crack tip.

4.4 First Term of J;
Using the parametric representation of displacements

Uy = NJ‘U,;, (143)

where 1 is the direction of crack front coordinate system and the superscript J is the
node number, it is possible to have such an expression for the calculation of the first

term of J-integral of Eq. (133):

1 1 1 L M L
(Jef)1 = _/ / / (WaN oot g O O u{"sL) det(y) dédnd¢ (144)
-1J/-1/-1

— s O —
aIk 1 sz 612]'

where det(7) is the determinant of Jacobi matrix. An effective procedure of computing
Ji with several types of s-functions consists of a separate 2 x 2 x 2 integration of the

expression
1 rl rl ONt ONM 9N .
F=- -0 —— M) det(j)d¢dnd 145
B /_1/_1/-1 (W oz % Oz Oz; = ) edf)dadinds (145)
and defining a scalar product:
(Jef)1 = Rys® (146)
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4.6 The Second Term of J,

3;;:;::}ns:i;ﬁ?culty in igtegrating(137) arises from the fact that we know precise enough
ain energy density, and strain, only at the 2x2x2 G i
; e 1sity, rain, auss Integration points.
;\t}:ﬁsmble way of integrating the derivative of such functions is to obtain the der?vati\:e
Ce ce'nter of the element and to perform a one-point integration.
onsider a 20-node element in local coordinate system ¢;

61267 62:7” 53:§.

L j
poin: s i}s'?;;me t‘hat we know t.hat values of the function F only at the integration
as - Using a parametric representation, it is possible to write

FUV) = 1) pI (147)
where F7 are unknown val f F
ues of F at corner nodes 1...8, L are linear shape functions

for corner nodes, L/(¥)
5 are values of shape functions at i i i
The inversion of (147) gives ST o,

I _ (rI(0)\-1p(J
Fl = (L1U))-1p0) (148)

The coefficients of the extrapolation matrix (L/())~1 are:

" A B C BB C D C]
A B CC B C D
A B D C B C
(LI(J))_lz A C D C B
ABCB (149)
sym. A B C
A B
A
A_5T3V3 o VB4 V3—1 5-3v3
T4 P Ot D=1 (150
Now, from (148) we can calculate the derivative at the center of the element:
oF oL’ .,
— = = (LIUN-1p()
T g 00 (151)

where, the derivatives 8L /dz, should be calculated for ¢ =n=¢=0.

4.6 Third Term of J, of Eq. (133)

For simplicity consider the disk wi i
oL isk with A; and 4, being orthogonal to the crack front

ny =ny =0, ng =1 on A4,
ny = ng 20, ng = —1 on Az
Ay,
fs==[  osis
) i, %8 3z, "3 dA4 (152)
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If A] = A2
au.-
(Jef)s = —/Al A (o.-aéz—k) sdA (183)

where A(F) = (F)a, — (F)4,-
Assuming that every function is linear in the zs direction and using the values of

functions at integration points ¢ = #(1/+/3), it is possible to define AF as

ar=va[r(s=3)-r (=]

\(T)
Oufts == [ V38 (0a2) s den(s) ag (154)

where AF(T) = F(¢ = %) — F(¢ = — J3)-

Examples of three-dimensional J; computations using the domain-integral methods
may be found in Nikishkov and Atluri (1987b), and Nakamura, Shih, and Freund
(1986). Application of the ”domain-integral” type evaluation of the crack-tip integral
parameters in viscoplastic dynamic crack propagation at fast speeds, has been discussed

in Yoshimura, Yagawa, and Atluri (1988).

Then

5 Weight-Functions for 2 and 3-D Elastic Crack
Problems

The concept of weight functions for elastic crack problems dates back to the work
of Bueckner (1971) and Rice (1972) [see also Bortman and Banks-Sills (1983)]. The
"weight function” may generally be viewed as the appropriately normalized rate of
change of displacements (at the surface where tractions are applied, or in the domain
where body forces are applied) due to a unit change in the crack length for a reference
state of loading. The practical importance of the concept of the weight functions lies in
the fact that, when the weight functions are evaluated from a (perhaps simple) reference
state of loading, then the stress-intensity factors for any arbitrary state of loading can
be computed by using an integral of the worklike product between the applied tractions
at a point on the surface in the arbitrary state of loading and the weight function for
the reference state at the same point.

The energy-release due to a unit crack-extension in a cracked elastic body, subject
to a system of surface tractions, (We assume, for simplicity, that the surface S, where
non-zero displacements are prescribed, is zero. One can easily generalize the ensuing
discussion to the situation when S, is nonzero.), and body forces, is given by:

dug du, d
o [ g0 w2 [ wav
s=frmas+ [ rm gl (%)

where t; are tractions applied at the surface S;; f; are body forces in the domain V5 u;
are displacements, and W is the strain-energy density (internal energy in mechanical
work). Eq. (155) may be written as:

d d; d
L Sh, .a =_/ s - _/ 7
o+ [ Swas+ [ Puav = o[ wwas+ [ fwav - [wavy  (156)
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or
da + Ui -+ V = —dn
Gda /& dt;u;dS / dfiu;dV = —d (156)

Let the reference load state be characterized by a parameter A\. Thus
§da+drg()\) = —dn (157)
where

q()) = /S' tiu dS+/Vf.-u.- av (158)

whele dt { — dAt iy df. — dAf. and in general, 1n a nonlin P 3
3 § iy 3y 3 l, n ] ear elastlc Iobleln the
gEllEIEL]lZEd dlsplacement qgisa lﬂnllﬂea] fllllCt]UIl of X Equatmn (15 :) mp hES that

). (2),

Consid i i i

o caszr ; hlme:}rl-elastnc l}omogeneous solid, that is in general anisotropic, and consider

o e m;a:ed e c:lack is -at an arbitrary angle to the material directions, and under
m _mode ‘loadmg. The energy release rate, G, for a mixed-mode k i

a monoclinic anisotropic solid may be written as: e

6 =AK}!+ BK? + CK, Ky, (160)
where
A= g (M)
2 Hipts

Vs
B = Ealllm(#l + i)
¢ = T !

2 { 622 Im (#1#2) + ay; Im(ﬂl#z)} (161)

where a;; are material constants i i

s in the relation ¢; = a;;0; (1,7 =
comple(;( r([)ots of the characteristic equation, a;;u! - 2a“:;t"’1+((,2]a +6¢)16a)n% uj2are e
az2 = 0. [See Sih and Liebowitz (19 h i 12 e of isotreny.
[153) ot (1968) for further details.] In the case of isotropy,

1 1
A — . _— . —
=—; B=%. c=o0
H=E/(1-v?) planestrain; H = F planestress (162)

€ n conSIder the st ) =
% ow mmlt
aneous action of 2 Ioad sysl,ems on the cracked )”('_V-

(A} +2%2) atS,; and AW+ v (163)

When (163) is used in (157) one obtains:

Gda+dr\ECp A" = —dm; R,n=1,2 (164)
or
96 _ dCga .,
IAE " da A (165)
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40 o daF / . diR
- n T8 nZh gy
= B as+ [ g,
R,n=1,2 loadcases 1=1,2,3 (166)

The K-factors under the combined mode loading are

K; = K™, K= KjaA™ (167)
[sum on m = 1,2] and
G = ARMRIA™\" + BRGRIA™ A" + CRT KT A™A" (168)

[sum m,n = 1,2]. Using (168) in (165), and observing that the resulting equation is
valid for arbitrary A! and A? one obtains:

o S & ac,
(2A+ C)KFR} + (2B + C)KF Ky = da" (169)
daF . diR
= [ 2% gs / n gy
/S. ' da ki Vf' da 4
R,n = load cases (170)

Let R be a known reference load-state, for which the solution, i.e., KE, KE, and
(d2%/da) are known, and n is an arbitrary load-state for which the mixed mode factors
K} and K7, are to be computed. Eq. (170) is thus a single equation governing the two
unknowns K} and K7;. By writing Eq. (170) for two known and linearly independent
reference states, two equations for two unknowns K}' and Kj; can be obtained. The

solution of these equations can be seen to be:

K = Aﬁz)‘m dCmpr1 kﬁl’\m dCrmr2
KE(2A+C) da KR(2A+C) da
(no sum on m) (171)
K = KFA™  dCmm  KPA™  dChm
"~ KR(2B+C) da  KR2B+C) da
(no sum on m) (172)
aud
KR — I*{Imf{lRIz _ f(lmf(ﬁl (173)

where (dCpp1/da) etc. are defined from (166) by replacing R by R1 etc. It is seen
that for KE to be nonzero, the reference states should not be both of either Mode I or
Mode II. Furthermore, in a general anisotropic body with an arbitrarily oriented crack,
the reference states R1 and R2 can be taken to either loads on external surfaces, or
tractions on the crack-faces themselves.

Thus, to evaluate the mixed-mode load factors for any reference state m, one only
needs the appropriately normalized weight-functions, (du/"'/da) and (du[?/da). In
the following we discuss some recent work on computational methods for these weight

functions, for anisotropic or isotropic materials.
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6.1 Weight Functions, Using Finite Element

1{ Boundary Element Models of only Uncracked Struc-
ures:

R . 5
plzc;il::ﬁ ghefn and Atlu'rl (19§8a,b) and Rajiyah and Atluri (1988a,b) developed sim-
0ds tor computing weight functions using finite element or boundary ele t
models of only the uncracked structure. v eemen
It i . s
. o? nlts 1wo(rithfnotmg that, du'e to the complications of the fundamental solutions (for
coﬁvenie :taf) or al 'general anisetropic medium, the boundary element method is not
or application to the anisotropic soilds. However, it i
: ; 2 t is well known that th
‘Clia(;letl];l:nﬁ If;i.rélte 1element lmet;hod does not have this restriction’. Chen and Atluri ( 1988()e
lie-element alternating method (for i i i
! general anisotropic solids) and Raji
and Atluri (1988) use the boundar i ’ copic sl
. i y-element alternat i i i
In computing the weight functiozs. R St wolide)
nien\;V:nle the? load-systems are, in general, considered to be at St and in V, it is conve-
ier Coo c_;nmder only the c.omp!efnentary problem of tractions on the crack-face alone
an treais:g e;‘ tge :;:}alse, forksunpllcnty, when the body forces are zero. Thus, hence fort};
¢ 10 be the crack-face alone. It is seen that the wej i
; ; 2 eight-functions (duf/da
l:lhe) cr;c}:lk—fa.ce w1.ll be singular (of the ~1/2 type, where r is the distance frox(n t'hé cre)xc(l’(r-l
p). us, special quadrature rules are needed to integrate the quantity ¢7 [duf/d
on the crack-face [Chen and Atluri (1988)]. ‘ B
o ;‘:I:e(fi(:;l%wmgdsolutionkprocedure is adopted to compute the weight-functions for
€d or edge crack in a general anisotropic, finite-dj i
d ' ‘ - . s e-dimensional structure, wh
the crack is oriented arbitrarily with respect to the material axes of anisotropy e

E:) CinfSIder tv(;'o }(liifferent reference states: one a normal pressure (say constant) on
€ crack-face and the second a shear traction (sa
; y constant) the crack-face. These two
;oEd s.tates are labelled.Rl and R2 respectively. Henceforth it is understood that the
ollowing steps are carried out forstates R1 and R2 respectively.

gzztio:l;esst?r:hvyith, treat the problem as one of an infinite domain. As discussed in
-0 O this paper, expand the applied tractj i
it England (107, pplied tractions on the crack face in the form

. N
Tyy = 172y = —[p(2) +is(t)] = Z bpUn—1(t) [tI<a (174)

n=1
where U,,_, () is the Chebyshev polynomial of the second kind, defined as:
Un = sin[(n +1)t]/sin 6, =acosf (175)

:}Illj b, Zil.(r? the. paral:nete.rs determined by curve-fitting. For this applied loading on
crack-lace in an infinite anisotiopic body, the solution for the K-factors, far-field

stresses, and crack-f: i i
s ck-face displacements, can be derived [Gladwell and England (1977)]

B

N
K]“ZK” ZZFVW(IZ[J" r = *ta (176)

n=1

Uz = 2Re[pid(21) + payp(2y))]
2Re[q16(21) + q29p(2,)] (177)

I3
<
Il
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2Re[si¢'(21) + s5¢'(22)]

Ty = 2Re[¢'(21)+¢l(‘z2)]
Toy = —2Re[31¢’(21)+52¢,(22)] (178)

N 2 N )
26(21) = (szs—zsl)nlee("")R*n,(f)*LG‘is—z)g'lm(b")
R (22)

20(n) = ( i )gRe(bn)—n———#——l———iiIm(bn)

Rn (21)

Bule2)  (199)

81 — S2 (32 - 81) n=1

For further details of the definitions of various parameters in (178), see Gladwell and
England (1977) (note the coordinate system: z along the crack, z = *a for the crack-

tips, and y normal to the crack).

(C) Compute the K-factors for step (B) using (176).

(D) Compute the crack-face displacements for step (B) using (177). Note that, once
the coefficients b, of (174) are known, the crack-face displacements u, and u, from

(179) and (177) are known in an analytical form, with their dependence on the crack
length being explicitly known [see Gladwell and England (1977) for details].

(E) Compute the tractions at the boundaries of the given finite-dimensional structure,
using (178). Call these residual boundary-traction system as T (recall that steps (B)
onwards are repeated for reference systems R1 and R2 of step (A)).

(F) From the analytical expressions for u; at the crack-face as determined in step (D),
determine the analytical expression for (du;/da) by differentiating u; w.r.t. a. Note
that (du,;/da) will be infinite at the crack-tip £ = *a.

It is important to remember that the present step (F) is still based on an ana-
lytical solution. No finite element or boundary-element models, and no virtual-crack
eztensions, and no finite-difference methods are used in computing (duff/da).

(G) Now consider the finite element model of the uncracked structure of the given
geometry,and anisotropic material [In the case of isotropic material, a boundary-element
model (with only the boundary being descritized) of the uncracked structure is far
more efficient [Rajiyah and Atluri (1988)]. Apply the reverse of the traction system
T as determined in step (E) above, on the boundaries of the uncracked structural
model. From the finite-element (or boundary element) solution, find the tractions at
the location of the crack in the uncracked structure, and label this traction system as

R..
(H) Reverse the system R, on the crack faces. Go back to step (B), and repeat steps
(B), (C), (D), (E), and (F), for this system R. on the crack face in an infinite domain.
Repeat steps (B) to (H) until convergence is obtained, i.e., the traction system T in step
(E) is negligible.
(J) The weight-functions for a finite-dimensional structure of the given geometry, and
given crack-orientated, are obtained by summing up all the values of (duf"/da) [and
duf? /da| obtained in step (F) for all iterations until convergence is established.

A number of problems has been solved in Chen and Atluri (1988), and Rajiyah and
Atluri (1988) to demonstrate the ease and accuracy of the above procedures.
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It is important to note, the crack is not numerically modelled at all. The depen-
dence of crack plane displacements on crack length as evaluated in steps (D) and (F),
for infinite domains, is explicitly known; and thus the weight-functions are evaluated
tn the above alternating method, in an analytical sense without using numerical differ-
entiations. Furthermore, the above mentioned procedures have been documented in
the work of Chen and Atluri (1988) to work very well for anisotropic materials with
arbitrarily oriented cracks.

For a two-dimensional anisotropic problem, it is possible to develop a boundary
element method for mixed-mode crack analysis, wherein a straight crack is ezplicitly
included in the formulation and not modeled by boundary elements, by using the fun-
damental solutions for an infinie cracked anisotropic plate. This was developed by
Snyder and Cruse (1975). This boundary integral equation is:

C.'J'UJ' = '/an [u;,-tj - t;-',-u,-] dA (180)
It should be noted that the crack surface, S,, is not a part of 91 in (180), as the crack

is explicitly accounted for in the fundamental solution. By differentiating (180) w.r.t.
a, one obtains the integral equations for (du;/da):

de; du; dul des;
C,-,-(du,-/da) = ./aﬂlu;ia;] d t;ld_aj + d;‘ tj — d;‘ uJ'] dA (181)

By taking the limit on the left-hand-side to 812, one can solve the boundary integral
equation for the unknown values of (duj/da) and (d¢;/da) at 80. Once these data at
911 is known, Eq. (181) simply becomes an integral relation for the interior values of
(du;/da). Since the crack surfaceis interior to 0 in the formulation, the crack-surface
weight functions can be determined from (181). Such procedures have been reported,
along with some examples, by Cruse and Raveendra (1988). An advantage of this
procedure is its ability to decouple the vector components of crack tip behavior easily.

5.2  Weight-Functions by Using Direct Finite Element / Bound-
ary Element Modeling of the Cracked Structure

The earlier class of modeling used only F.E.M. or B.E.M. models of the uncracked
structure, while the crack was accounted for in some analytical fashion. If the material
is nonhomogeneous, or if the crack exists in a complicated structural construction such
as a bi-material plate or a stiffened plate, etc., the direct numerical modeling of the
crack itself is unavoidable, to determine the weight functions. We discuss here some

advances made recently in this direction. The discussion is limited to the case of
tsotropy.

Consider the analytic relation

du; du; d
= [ ;S5 / -—‘-dV———/WdV 182
g ./s, da +Vf'da da Jv ( )
(wherein the existence of S, with nonzero values of prescribed u; is ignored, for sim-
plicity). In the context of a finite element method, wherein the cracked structure s
modeled directly by finite elements, Eq. (182) may be written as: )

dq dg 1 dK 1 dK
g—qda—qua_qua __anq (183)
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i i due to applied loading at arbitrary S,
where Q is the generalized nodal force vector ( : ‘
and in QV), ¢ is the nodal displacement vector, and K the stiffness matrix. Eq. (183)

from (182), since, at equilibrium, Kq = Q. ] .
h"oV‘:I,;xen a fgnite) element mesh is used near the crack tip, a small ch:—z.nge in crack
length, by da, affects only the elements in a core immediately surrounding the crack
tip T’his is the basic idea behind the stiffness derivative method [Parks (1974) and
Hellen (1975)]. Let the small domasin near the crack tip be V. Thus;
1 ARy (184)
§="3%4, %

where () indicates the quantity ( ) in the region V. In (184), (dK./da) is
determined by the finite difference relation:

K,(a+ Aa) — K,(a)
Aa

Eq. (184) can be applied to the reference statf, to d'etermine the I.(-facfl:or§ f(zrothicce
reference state. However, if the reference state is of fmxt.ad mode loading, for 1‘::.1* fh
materials, § = (K? + K?/)/H, and a mode separation is necessary. Thus within the
core-region V, [which is certainly much smaller tha.n the cracke.d st‘ructure], one may
decompose ¢° into mode I and mode II parts; by using the relations:

Ir ! 1 —
ml _ful ful 1 ul+uf}+_{ul+ }} (185)

Uz u{ Uy 2| uz —u; 2| uz+u,
where 1 and 2 are directions along and normal to the crack axis, respectively, and Where')
() denotes a quahtity at a point p in the upper portion of t'he crac'ked plate, and ( )f
is the respective quantity at a point p' which is the mirror image in the crack axis o

p. Thus ¢, = ¢! + ¢!'.
Thus

k)2 1 ,dK,
CUIAR. P (186)
= (KE) 1K o (187)
H =~ 27 da*

where ¢! is the vector of appropriate nodal. displacements u/, etc. No“f/ we Cgr::;l;:
the problem of determining the weight functions for th.e. re.ference sta.te of mlt)'(: ode
loading. To this end consider the finite element equilibrium equation for the enti
cracked structure loaded under mixed mode reference load:

Kg=/f (188)

For a fixed-loading, the weight-functions everywhere in the structure can be derived,
from (188), as:

d_q:_dK,q:dKeql (189)

da da da °° .
From a solution of (189), (4%) is determined for the refet"encc .?tate (.whu:h can, in
general, be a mized-mode loading), at all nodes at S;, and in V (including the crack-
face). :l‘he above method, for a pure mode I problem was presented by Parks and

Kamenetsky (1979).
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eulf:::;';nw;l ;:;:as;n; a sipﬂe extension of the ”stiffness-derivative” weight-function
ethod for mized-mode problems. In as much as the stj i
. met A stiffness matrix (K
gzi (1)1;5 d;r;va.tlve (dK/da) are evaluated once and for all for the structure, Eq. (188) (carz
(150 :(Iel P E)lrst;)uo rc/ebrenci stales, at least one of them mixed-mode, Rly and R2; Egs
can be ixed- ] .
Lo, KL BB go ;(r;czi fzr‘kmn'(ed mode K-factors for the two reference states,
sl st;: ) t, ,d 7 Li :rﬂse, Eq. (189) can be solved for the two different
P e;, o determine (duf"'/da) and (duf?/da) everywhere in the structure
”;’.I;Cd-m{;,lelr; d,.and on the crack-face) as desired. For any other arbitrary state of
e facto(:: z;g,t E‘:}ls.t(tl}':'l) andl (172) may be used for determining the mixed-
: - - Note that this simple procedure leads to  ght 1
in the structure (external surfac e body) s ocryhere
es, crack faces, and within the bod i
On the other hand, Sha and Y: : in o A
. ; ang (1985), instead of using th i
in the above perm: S ' 5 g the procedure as discussed
ph for mixed-mode problems, proceed t i
I and poremege o | ; » broceed to consider only pure-mode
ght functions, (du!/da) and (du!’/d i
displacement everywhere ¢ : " s ) e omporing ihe
ywhere in the cracked structure (not only 1 i
the weight-functions are sou e b
ght at the external boundar iri i
external boundary, and their mirror i i i el Aty
‘ ir me mages is geometrically impossible, fo bit -
shapcc'l structures, with arbitrarily oriented cracks. Sha and Yang ( 1985:) o ar'dt - the
following equations: ¢ consider the
Vi
Kdi _ dK, ,

da da ! (0]
and
Kd_q_” = _& 11
. 1 da da ! Wy
Iy ;oo
ino:; that ¢’ (¢'7) is simply a vector of appropriate displacements u] (u!") at each node
Ae st;ucture, which may not always be geometrically feasible. Y
evalu::il nex;) ;n((;tlh(m; dfo; Yve;)ght-(flunctions which obviates the need for a finite difference
s ¢/da) 1s based on the equivalent domain-integral
ating the energy-release rate. This meth e il
2 od has recently been developed b iki
(1988) and Chen and Atluri (1988). As di 0 elosh {390}, o
. As discussed by Nikishkov and Atluri

energy-release rate in a 2-D elastic i - (1987)’ =
. problem can b i i
integral representation of the J-integral), as: e O o eqpinlet ol

g:

1 ds du; Os
[W ] (192)

Fh|" a2~ 52,52,

:ve};ie:l ‘;,];15; e::); :;b;:;?trrya:;g;(;r: neai. the crz;ck-tip [V, is much smaller than the total
¢ continuous function which is equal to 1 at th -

tip, and goes to zero at the bou s F =11 i e Py B
W is the stress-work density, anrrlid:,-r ];r(;f ;s’pf;.c—errllelrrlltstw ® mensione st probisas;
Sid;:g;;zsg th:z,tist;e ;jeglon V, in (192) is tfs.ken to be the same as the region V, con-
e in zqe:mi {h[ ven othervise, if V, is smaller than V.; since (dK/da) may be
et 1 the region V. = V.; one may rewrite (184) as G = —1¢.(dK./da)q,
out loss of generality]. Suppose that one introduces a finite elemen2t interpolatior'uj

u = N*f K =1, N niodes
= Ng 1=1,2 (193)
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Then,
i 1
W = soiei; = jouNjul (194)

Also, we introduce the finite element interpolations,

s= N*s* (195)

Using (193-195) in (192), one has:

1 1
6 = —5 [ [gVENE - NANE|outst|av
1 ;
= --Z-T‘."u:-‘ k=1,---,Nnodes ¢=1,2 (196)
1 ]
= -—Z'Qst - q, (197)

where the definition of @} is apparent. Thus, when V, = V,; comparing (197) with

(184), one has:
dK, _ .,
da 9. = Qc

Note that Q% is computed from a simple integral over V, as in (196a) and (197). Eq.
(198) shows that a finite-difference evaluation of (dK,/da) as in Eq. (184) can be avoided
if the identity in (198) is used, and the energy-release-rate can be computed using (197).

For a fixed reference loading (which can in general be of the mized-mode type), the
weight functions everywhere in the structure (including at the external boundary, S,
the crack-face, or in V), can now be obtained, using (189):

(198)

qu = R = Q: (199)

da dg 1=

where Q; is computed from the domain-integral over V, as apparent from (197).

Equation (199) is solved for two arbitrary reference states [which are both not either
of Mode I or of Mode II type, with loading being either on the external boundary, or
on the crack-face] to find (duf"'/da) and (duf?/da) that are required in Egs. (171) and
(172) in order to compute, the mixed-mode K-factors for any other given arbitrary load-
state. Note that in (199), K is computed only once; and Q; is computed separately
for each reference state. However, examining (196a) and (197) it is seen that the only
quantity that is different in integral for Q; in the two reference states is 0y in V.

In order to use (171) and (172) to compute the mixed-mode K-factors for any given
arbitrary load-state is the only additional informations needed are the mixed-mode
K-factors (KF', KF?), and (KJ!, KF?) for the two reference states. For isotropic
materials, the mode-decomposition of the energy-release rate of Eq. (196a) can be ac-
complished by decomposing the displacement, strain, and stress fields in the core region
V., is much smaller than V, the total domain|. The displacement

V. near the crack tip [V,
decomposition is already given in (185), while the stress decomposition can be written

as:
I I 1 !
11 11 911 1 onton 1| on—9%i
= I 11 — 7 1 = !
022 = 0%2 + 0%3 = 2 092 + 09y + 2 O22 Tyq (200)
] ]
12 O12 012 O12 — Oy o12 + 09
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where, ( ) Amf ( .)' are quantitites at a point p in the "upper side” of the crack,
and at a p.om‘t p' which is a mirror image of p in the crack-plane. Thus, for a reference
state, the individual nodal intensities are computed from:

(KE)? 1/ ds du! 9s
inka? 9 SR wi=—" _ ol 2% 95
H Flv|" bz,  %i3q, 81:,-] v (205}
and
(KE)? 1/ Os !l o
H Fly dz, % 9z, dz; v (202)
where
r_1,.1 1
Wi = Ecij“ij; wil = Ea{j’u,-tj’ (203)

This co'mp]etes the algorithm for determining the mixed mode K-factors for an arbi-
trar.y given loading, using the weight functions for reference states derived from the
tef]uwafli;zlt dt:.r;lfain i:;tegral methsd, which avoids the need for a ﬁnite’-difference evalua-
ion of the stiffness derivativ i i
by Parke ot Kemermir : fgg;il){ /da) as in the approaches for Mode I problem given
. Speci'al variational technique for determining directly the weight functions that are
singular in the vicinity of the crack-tip (crack front) (and hence have unbounded strain-
energ.y) has befen presented by Sham (1987). This variational technique handles both
t‘ractlon ‘ant'i mixed boundary conditions. A finite element implementation of the varia-
.tlonal p'rmc1ple has also been given by Sham (1987) and this leads to a unified approach
in the direct finite element computation of weight functions for all three fracture modes
Sham and Zhou (1988a) have presented weight functions for a semi-infinite crack in z;
full space of arbitrary anisotropy; in particular, the results for monoclinic solids are
pre.sexfted in closed form. Usingsuch a solution, Sham and Zhou (1988a) applied the
varlatllonal technique of Sham (1987) to determining weight functions for homogeneous
am.i pl.ecewise homogeneous anisotropic (where crack tips do not terminate at the ma-
terial mtel:afce) bodies. Employing the weight functions obtained, they also evaluated
the stress intensity factors of a matrix crack in an idealized model of a fiber-reinforced
.composite laminate under curingconditions. Sham and Bueckner (1988) have recentl
introduced antiplane strain weight functions for an interface notch in an isotropic bi):
crystal‘ and Sham (1988a) has used the same variational technique to determine these
notch-interface weight functions. Generalizaing Beuckner’s (1971) weight function con-
cepts, Sham (1988b) has developed higher order weight functions for calculating power
expansion coefficients of an elastic field in a two-dimensional body in the absence of
body f.orces, Integration formulas for the expansion coefficient, in analogy to those for
stres.s intensity factors, are given for interior points and crack tips. Some of thesol ex-
pansion coefficients at an interior point can be related to the image force of a discrv‘t(‘

dislocation and those for the crack ti i
i p correspond to important fract 2
discussed by Sham (1988b). ’ e parameters ae

5.3 Weight Functions and Influence Functions for 3-D Crack
Problems

A‘s a.ptl‘y noted by Swedlow (1988), "since fracture and fatigue are demonstrably three-
dimensional, the technology base needed to describe these processes must be of the
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same dimensionality if only to describe these events, let alone predict them”. Thus,
simple numerical methods of engineering interest are in need of development for 3-
dimensional problems. Along with the domain integral methods, the weight function
approaches to 3-D problems present interesting possibilities in this regard.

Here, we consider, for simplicity, only mode I crack problems in 3-D isotropic elastic
solids. For isotropic solids, containing cracks of arbitrary shape, under mode I loading,
Rice (1972) has derived the counterpart of Eqgs. (171) and (172) [for mode IJ, as follows:

fr %[mx}*u]ar: /S tibul dS + /V fibeui* dV (204)

where T, is the crack-front; K is the stress-intensity factor (which varies along T.) for
any arbitrary loading t; at S; and f; in V; KJ is stress-intensity the factor (which varies
along T',) for the reference loading t* at S; and fF in V; S; is the loaded-surface (which
may be taken to be the crack-face, without loss of generality); 6£ is a smooth function
along dI' denoting the infinitesmal advance of the crack in a direction locally normal
to I'; 6,ul will denote the first-order variation in uf to a change in the crack-front i.e.,
6uf is a function of the location in S; and V, and H is a material constant.

Rice (1985) has presented results for the first order variation of an elastic displace-
ment field associated with the arbitrary incremental planar advance of the location of
the front of a half-plane crack in a loaded elastic full space, and also discussed the
relation of such results to a 3-D weight function theory, and derived an expression for
the distribution of the mode-I K-factor for a slightly curved crack-front. Later Gao
and Rice (1986) extended this work to the mixed mode case.

Recently Bueckner (1987) has presented analytical results for 3-D weight functions,
for a penny-shaped and a half-plane crack in an elastic full-space, under mixed-mode
conditions. Employing these results, and Sham’s (1987) variational technique, Sham
and Zhou (1987b) have determined the Mode I weight functions for both penny-shaped
and elliptical cracks in finite bodies.

Here, our objective is to discuss crack-surface weight functions for embedded or
surface cracks of the elliptical geometry, i.e., we treat S; to be the crack-face in (204)
and ignore the body forces. For surface or corner flaws of semi- or quarter-elliptical
geometry respectively, engineeering theories of fatigue crack-growth are often based on
the consideration of the K-factors at the major and minor axis locations (z = a, and
y = b), respectively. Thus, one often thinks of a ” two-parameter” characterization of
K-factor variation along the crack-front, for the given arbitrary loading. There are two
alternative approaches for the above ”two-parameter” characterization. One is directly
in terms of the "local” values (or values at major and minor axis points on the ellipse)
K; and K;*; and the other is in terms of "local weighted average” values along specified
portions of the crack front, K} and K}*, defined as:

- 1
R}t = —/ KZ26€dr
(K7) A, I,
> 1
Ry = — / KZ26T 205
(K™)" =3 i R (205)
where K; and 6£ are as in Eq. (204), and 6 A; and 6 A, are changes in crack area due to
a virtual change in the length of the major and minor axes, respectively. The weight

functions for these weighted average values, K; and K;* have been defined by Busuner
(1976), and used for residual life estimations of complex structures by Besuner (1976)
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and Cruse and Besuner (1977). 1
r . In the followi i
the weight functions directly for K} and K 16 e sketel 2 procedure for etebing
Su .
o &};o;;f;or tlhe reference Io?d state, the K-factor variation, K,R(I‘) is determined
Sl an] ]e 3 eTgnt alt‘.ef'natmg technique as discussed in Section 3 of this paper
i (,,wn o ; ytica expressmn. for Kf as a function of the crack-front coordinatf ¢.
N, wherein the appropriate coefficients are determined from the finite elem t:
en

solution for K for this loading, i i
,In t
andIK! it/ o Kfﬂ_m erms of its values, K; at z = ¢ (denoted as K7)
N p ; .
0 oneavsv }:E:.l:l}; :.}sl 124 in Eq. .(294) Is arbitrary, we introduce two such trial variations:
A pirss +e m:,y(z)r_a.xls is ext.‘.‘ended by (da) such that the equation of the ellipse.
et dal) %12/) =1 and (ii) the other wherein the ellipse is (z/a)? + (y/(b +
‘ . us, 6¢ is given in terms of (da) or (db) and the elliptical angle. Also

first-o iations in u®

coefﬁcli‘;l;:sv::;a:::ns in ul,-l at S, Ca.I.l be t'ietermined from analytical expressions where
e expreSSionsnflen;;Ryrdetermmed in thg) alternating method. Thus, when the
A oy o or;h i ( ), 6£(T); and beu;”’ are used, and the two-parameter trial
eunction | (onelfor r hefglven state) are used in Eq. (204), one obtains 2 algebraic
v ang K,** o eac ob th.e twoca..ses of 6¢ listed above) governing the two unknowns
i ,t,h S, one o t{uns a weight-function representation for the stress-intensit

: € major and minor azes of the elliptical (or part-elliptical) fl ‘
glve[rjl .state of mode I loading. PHEL e usdisthe
si i i

Bt azgdt.elle‘lVdN{& analy-tlca.l solutu.)n for an embedded elliptical crack in an infinite
ailed in Section 2 of this paper, Nishioka and Atluri (1988) derived an

this, Nishi i
repr;sli;sth;;;léz ?gdtﬁtluj? f(1988) have developed the above described weight-function
T the K-lactors ai the major and minor
: ' axes -ellipti

cracllf(, 11;1 the forementioned 2 Parameter characterization o SSlpes ol

el th; Z:;:;tlfon under 'the action of an arbitrary crack-face traction is needed all

e t- ront, the influence function concept is more useful. For a given surface

- alon: t;z s ru]c(t;lral geometry', one can generate a stress-intensity factor variation

o c:}a].cd- ront,‘for a gzvm.polynomial loading on the crack-face using the

pltern: decgome od 'desc.rxbe:d_m Section 3. If the given arbitrary crack-fa::e pressure

o aien ¢ th;x:lpto;e 1:1;0 ;ndlvxdual polynomial variations multiplied by an appropriate

5 € H-lactor variation for the given load can i i
; ¢ T ¥ easily be det

(welghted) linear superposition of the various influence functions Thiseh(;nl‘)':e:] (:‘-" .

. D one

for several problems [Nishj i i
(1984b)]. [Nishioka and Atluri (1982); O Donoghue, Nishioka, and Atluri

polynomial type.
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