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ABSTRACT

The numerical evaluation of the creep fracture parameter C. by
the virtual crack extension method in analogy to the evaluation
of the J integral is described. The methods are demonstrated by
two- and three- dimensional finite element simulations includ-
ing creep crack growth in plates and pipes with surface cracks.
As for ductile fracture experiments, plane stress and plane
strain simulations are bounds to the three-— dimensional simu-
lations which agree well with corresponding experiments.

INTRODUCTION

The transferability of fracture mechanics parameters obtained
from laboratory specimens to structures under service condi-
tions relies on a series of assumptions. The principal assump-
tion is that the selected fracture parameter is only dependent
on the material in its current status (e.g. temperature) but
not on geometry. This geometry independence is usually demon-
strated by testing different specimens under different loading
conditions.

Several "one-parameter concepts" of fracture under high- tempe-
rature cond}tions have been proposed in recent years. Among
them, the C -integral concept understood as an extension of the
J- integral concept (Rice, 1968) of elastic plastic fracture
mechanics seems to have the widest range of applicability, if
large creep zones develop and stationary creep conditions can
be assumed (Landes and Begley, 1976; Saxena, 1980; Nikbin et
al., 1984, Stonesifer and Atluri, 1982, Kienzler and Hollstein,
1986) . For many materials the prediction of creep crack growth
rates a by the concepts of stress intensity factor (Sadananda
and Shahinian, 1978), reference stress (Nicholson and Formby,
1975), and path-independent integral J (Kienzler et al., 1985)
are applicable only with a large degree of uncertainty, whereas
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the c’ integral correlates with & over several orders of magni-
tude within a narrow scatterband.

Both integrals, J and C., have the same theoretical basis,
since they follow from tramslational invariance of the general
energy balance of continuun mechanics. If a nonlinear elastic
material is described by a power law and a nonlinear viscou§
elastic material is described by a Norton power law, J and C
can be calculated simultaneously by replacing energy and dis-
placements with their respective rates (Kienzler et al., 1985).

The original definition of c¢°* is given as a 1line integral
(Landes and Begley, 1976) but C may be interpreted as the
creep work dissipation rate if elastic strains are neglected:

*

% (1)

C‘ = I( W. dy - Ti_gﬁi ds ) = -

r
with the stress work rate W' given by

wie

. _n .
W = J aiJ d":i.j R (2)
o
and U* defined by
v
=] Fav. (3)
0

I' is an integration path around the crack tip connecting the
lower and upper crack face counter-clockwise, T is the
traction vector on ', B is the specimen thickness.

THE VIRTUAL CRACK EXTENSION METHOD

Especially for FEM applications the virtual crack extension
method was introduced by Parks (1974, 1977) and later modified
by DeLorenzi (1982). It was herewith possible to extend the
J-integral concept to three-dimensional situations to obtain
local values along a three-dimensional crack front.

The equivalence of the path- independent integral and energy-
release rates is strictly valid only in very limited cases. So,
Parks and DeLorenzi established their formulations within
certain limitations, e.g. deformation plasticity, isothermal
loading, etc. several authors have proposed correction terms
usually in the form of volume integrals to recover
"path-independence" also for other loading cases. Recent
re-evaluation of the theoretical background (Schmitt and
Kienzler, 1988) revealed that independence from the integration
regime may always be recovered if suitable area (2D) or volume
(3D) integrals are evaluated over the interior of the contour
or surface. This even holds if the material is described by an
incremental law of plasticity. Since application of the virtual
crack extension method involves integration over this area or
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volume anyway, the additional numeric§1_ effort arising from
these correction terms is usually negligible.

i h
For isothermal static cases in the.absgnce of body forces the
IWM formulation (IWM-CRACK, 1988) is given by

al Bl

ddetd

J = - _i 2 z w [ W + detd oF — u] (4)
AA SPL aax 3AX

El Gp

i i due to AX, AX is a vwvir-

i he virtual change in cracg area A ] '

iﬁaisdgsplacement pattern, detJ is _the Jacob1an_ detizmlgzﬁzn

[B] is the strain-displacement matrix. T:e ?ET?at;EZ o e

i i 11 elemepts .
over all Gauss points (Gp) in a . : T o el
i 1 € is similar

tion of the «creep 1integra . ’

ev:iﬁ:tion of J. In this case the approprlate-rat?s of W and u
- must be inserted in the above equations:

W and u,
3l Bl1.
ddetJd
c‘-__iz Zw [ W+ detd o a——u} (5)
- SPL aax AX
oA El Gp

SIMULATION OF CRACK GROWTH

In order to include crack propagatizn ini %2378f1:::e mségg:zs
i i d by DelLorenz
simulation a method develope y . 7 e
- 1l applications.

tented to three d1men51on? r )
ang ae:tion law of the model 1is either an expeiamezzzi
p;sngation e.g. a measured displacement vs crack grow cs(é)
3(Aa) or a material resistance curve, e.g., J(Aﬁ) gzspectivé
Accoréing to this law the crack tip node: am]i:n ttge o i

i i 11 increments.
side nodes are shifted by small s e
i trix is reformed. e
load step the stiffness ma taebing el
i i tep are used as sta
ins of the preceding 19ad s ass

;;iathe equilibrium iterations. Wgen t?etﬁzrgiistnggzmegg the

lement is reached the two nodes o re
?2§Za:ed This procedure allows small _:gogz;ztiggly §§:§se

son i d even wi

on increments to be p;odgce v . .
zizizzlelement grids, which is important for 3D applications

RESULTS

*
Two—- and three- dimensional evaluation of C

of the material

i i ecimens
A series of side-grooved compact sp ot Bl tbein

Inconel 617 were tested at T = ?00°C (K}enzler
1987) . The experimental evaluation of C from

' L (6)
¢t = ——
B(w-a)

utilized n-factors (Webster, 1983)
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n w—a
n = o+t (2 + 0.52 '—a'—)

(7)

which are essentially the same for plane strain and for
stress (n is the exponent in the Norton creep law).

/‘

Figure 1: FE-mesh (2D) for
a compact specimen
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2D and 3D finite element simulations f the experiment have
been performed in order to calculate C as a function of time.
The 2D mesh is shown in figure 1, a three layered 3D mesh is
developed from the plane mesh without modelling the side
grooves. By utilization of the symmetries ogly one quarter of
the specimen is modelled. Local values of C are obtaineg at
four points along the half-thickness. In‘ figure 2, is
plotted vs. thickness at different times. C takes its maximum
value at the center and drops towards the free surface

of the
specimen. The time relaxation of the stresses causes a decrease
* 904 [N _

mean values

104 t=  1h: C¥=0.67.10*IN/mms]
' t= 10h: C¥=053-10° IN/mms]
t=1h t=100h: C}=049-10* IN/mms]
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Figure 2:‘CT specimen,
] IN 617: C as function
of thickness
00 T T—T » x [mm]
0 2 4 6
|
center surface

of c* with time. After about 30 h, c* takes a constant steady
state distribution across the thickness. For comparison with
experiments and with 2D calculations the average of the calcu-
lated 3D variation across the thickness is taken and plotted in
figure 3. The agreement between the 3D simulation and the

ex-
periment is rather astonishing. The measured creep crack exten-
sion came to less than 0.5 mn during the whole experiment, such

that the utilization of a stationary model seems adequate.
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Figure 3: CT spgcimen, IN 617: Experimental and numerical
evaluation of C vs time

i i H at 800°C (Hollstein and
I? -y i;gz?ngéig 22CZ§?Y 82887), tension §pecimegsr weig
Klenz}]er'ith éemi-elliptical surface cracks 1in orsiandard
i wte the transferability of resu}ts from n dard
demo?stra to more realistic structures. Unlike for eetiies
o ecipens —factors are not available for 3D cracg geo: eforé
The adequ Ze evaluation of these experiments relies t eiinite
one adequaerical analysis. Figure 4 shows a p§rt'of t?ec‘ inive
02 tzztnzzsh utilized. Figure 5 shows the variation o
ih:mcrack front for different times.
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Figure 4: PTC specimen: Figure 5: PTC spgcimen,

Incoloy 800 H: C along
Contour plot of FE mesh (3D) g o
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This variation changes significantly with time until steady

state conditions are reached. By comparing the mean values of

t : : : :
hese distributions with a formal evaluation of C according to

eqn. 6 n for this geometr
Y could be calculated, =
:;egrzo evaluate furthgr experiments. The resultsn ofo.1Zé :;g
baﬁd o?egﬁeeg %;?ted w1;h this #7- factor fit into the scatter
correlation i
growth experiments (figure 6). °f a variety of creep  crack

Simulation of creep crack growth

gzszpccra?kdgrowth experiments with the steel 21 CrMoNiVv 5 7
e dif;:;;zt ouF at 550-C witp side—-grooved compact specimens
sizes (Hollstein and Kienzler, 1987) Finite

m] 40,0034 C*073
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Figure 6: Incoloy 800 H: Crack growth rates a vs ¢’

e 3 .
sig:ﬁ::izlmu%atlons of these.experiments with and without con-
i n o c;ack propagation were performed in order to val-
date t.e numerical procedures de§cribed in section 3 Th
accor;i;gntgfe;2e gree? integral C in the experiment was' don:
s using V, the measured load i i
ment rate due to cree i . 11igeq  solace-
ent P only. The material law utili i
. . ili
f;zltg ilement simulations was of the Norton type tﬁgs lgodt?f
expgrin ytsecondary creep. Therefore, the early éimes in :h
g Tg:n ari not well represented by this choice of materiai
=8 éxperi;Z::s gggw::k}aw ? (&) was approximated from a series
. . ing into account significant
crack propagation in the starting phase of the expei{meiigarded

Figure 7 compares mea
sured and calculated c° i
: - vs ti
from one typical experiment and from the finite elemgst c:izﬁf
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lations. The calculations without con§ideration of crack growth
(& = 0) significantly underestimate C for all times. Even the
plane strain solution (EDZ) with consideration of crack growth
fails to meet the experimental curve by about one order of mag-
nitude. The plane stress solution including crack propagation
(ESZ, & = 0) compares fairly well with the experimental curve.
At early times, the above mentioned deficiencies in the creep
law and ;n the crack- growth law explain the fact that the
actual C  is underestimated by about a factor of less than 2.
Keeping in mind the usually large scatter in experimental creep
crack growth curves this deviation seems acceptable. At later
times the agreement between analysis and experiment is sur-
prisingly good, the curves are nearly parallel with the ESZ-

simulation above the

?
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Figure 7: CT specimen, 1% Cr steel: experimental and numerical
evaluation of C vs time

experiment. Considering the small thickness dimensions of the
specimen of 12,5 mm the plane stress model must be considered
most appropriate. Realizing that if crack growth is included in
the models, plane strain and plane stress give lower and upper
bounds to the experiments, an even better quantitative
agreement may be expected from three- dimensional calculations.

CONCLUSIONS

Reliable finite element methods based on the virtual «crack
extension method and the node shifting and releasing technique
are available to simulate creep fracture experiments

numerically.

Stationary models (i.e. without taking into account crack
growth) are applicable for the first part of an experiment
where creep crack growth does not play an important role. If
crack crowth is significant, however, it must be included in
the models. Plane strain and plane stress yielg lower and upper
bounds to the experimental results, e.g. the C (t)- curve. As
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in elastic- plastic fracture mechanics three- dimensional
models are required to ensure quantitative agreement.

Improvements may be expected from better material laws covering
also primary creep and from more accurate correlations between
crack velocity and creep integral.
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